Seismic site effects in the central zone of Monterrey Metropolitan Area (northeast Mexico) from a geotechnical multidisciplinary assessment

  • Jorge A. Salinas-Jasso
  • Juan C. Montalvo-ArrietaEmail author
  • Efraín Alva-Niño
  • Ignacio Navarro de León
  • Juan M. Gómez-González
Original Article


Prediction of the ground shaking response requires data expressed in terms of soil dynamic properties. Based on the analysis of surficial geology, geotechnical borehole data, seismic refraction (VS) and microtremors (H/V) surveys, we have developed a qualitative evaluation of local ground response to earthquakes in the Monterrey Metropolitan Area (MMA), the main urban and economic hub in northern Mexico. The results provide a detailed geotechnical model for the central zone of the MMA. Although such information is not yet complete for the MMA region, an initial approach has been developed in order to estimate the distribution of damage associated with expected moderate earthquakes. An empirical correlation is introduced to obtain VS as a function of standard penetration test blow counts (SPTN). According to the results, the central-southern part of the study area might experience higher amplifications of ground shaking produced by moderate seismicity because the larger thicknesses of alluvial sediments are deposited there. The 2D geotechnical model proposed would be very useful in making decisions regarding planning or land use, deployment of protocols of rapid response and for producing detailed microzonation maps for those zones with similar geological features as the MMA in northeast Mexico.


Intraplate earthquakes Site effects Alluvial sediments Shear wave velocity Standard penetration test Spectral ratios 



The first author (JAS-J) received a scholarship from Consejo Nacional de Ciencia y Tecnología (CONACYT). We are grateful to Martin Gordon Culshaw and the two anonymous reviewers for their critical remarks that helped to greatly improve the original manuscript.


  1. Alva Niño E (1995) Datos base y metodología para la elaboración de una carta ingeniero-geológica de la zona Metropolitana de Monterrey, N.L./México. BA thesis, Universidad Autónoma de Nuevo LeónGoogle Scholar
  2. Anbazhagan P, Kumar A, Sitharam TG (2013) Seismic site classification and correlation between standard penetration test N value and shear wave velocity for Lucknow City in Indo-Gangetic Basin. Pure Appl Geophys 170(3):299–318CrossRefGoogle Scholar
  3. Aranda-Goméz JJ, Housh TB, Luhr JF, Henry CD, Becker T, Chávez-Cabello G (2005) Reactivation of the San Marcos fault during mid-to-late Tertiary extension, Chihuahua, Mexico. In: Anderson TH, Nourse JA, McKee JW, Steiner MB (eds) The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. Geological Society of America Special Paper 393, pp 509–521Google Scholar
  4. ASTM International (2011a) ASTM D1586-11. Standard test method for standard penetration test (SPT) and split-barrel sampling of soils. ASTM International, West Conshohocken, PAGoogle Scholar
  5. ASTM International (2011b) ASTM D2487-11. Standard practice for classification of soils for engineering purposes (unified soil classification system). ASTM International, West Conshohocken, PAGoogle Scholar
  6. Bird JF, Bommer JJ (2004) Earthquake losses due to ground failure. Eng Geol 75:147–179CrossRefGoogle Scholar
  7. Borcherdt RD (1994) Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra 10:617–653CrossRefGoogle Scholar
  8. Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17:465–474CrossRefGoogle Scholar
  9. Brandenberg SJ, Bellana N, Shantz T (2010) Shear wave velocity as function of standard penetration test resistance and vertical effective stress at California bridge sites. Soil Dyn Earthq Eng 30:1026–1035CrossRefGoogle Scholar
  10. Dickinson WR, Lawton TF (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. Geol Soc Am Bull 113(9):1142–1160CrossRefGoogle Scholar
  11. Doser DI (1987) The 16 August 1931 Valentine, Texas, earthquake: evidence for normal faulting in west Texas. Bull Seismol Soc Am 77:2005–2017Google Scholar
  12. Doser DI, Rodríguez J (1993) The seismicity of Chihuahua, Mexico, and the 1928 Parral earthquake. Phys Earth Planet Inter 78:97–104CrossRefGoogle Scholar
  13. Eguiluz de Antuñano S, Aranda García M, Marrett R (2000) Tectónica de la Sierra Madre Oriental, México. Bol Soc Geol Mex 53:1–26Google Scholar
  14. Erdik M, Şeşetyan K, Demircioğlu MB, Hancılar U, Zülfikar C (2011) Rapid earthquake loss assessment after damaging earthquakes. Soil Dyn Earthq Eng 31:247–266CrossRefGoogle Scholar
  15. Esfehanizadeh M, Nabizadeh F, Yazarloo R (2015) Correlation between standard penetration (NSPT) and shear wave velocity (VS) for young coastal sands of the Caspian Sea. Arab J Geosci 8(9):7331–7341CrossRefGoogle Scholar
  16. Fabbrocino S, Lanzano G, Forte G, de Magistris FS, Fabbrocino G (2015) SPT blow count vs. shear wave velocity relationship in the structurally complex formations of the Molise region (Italy). Eng Geol 187:84–97CrossRefGoogle Scholar
  17. Field E, Jacob K (1993) The theoretical response of sedimentary layers to ambient seismic noise. Geophys Res Lett 20:2925–2928CrossRefGoogle Scholar
  18. Frohlich C, Davis SD (2002) Texas earthquakes. Springer, 277 ppGoogle Scholar
  19. Fumal TE, Tinsley JC (1985) Mapping shear-wave velocities of near-surface geologic materials. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles region. U.S. Geological Survey Professional Paper 1360, pp 127–149Google Scholar
  20. Galván-Ramírez IN, Montalvo-Arrieta JC (2008) The historical seismicity and prediction of ground motion in northeast Mexico. J S Am Earth Sci 25:37–48CrossRefGoogle Scholar
  21. García-Acosta V, Suárez-Reynoso G (1996) Los sismos en la historia de México. Universidad Nacional Autónoma de México, 718 ppGoogle Scholar
  22. Gautam D (2016) Empirical correlation between uncorrected standard penetration resistance (N) and shear wave velocity (Vs) for Kathmandu Valley, Nepal. Geomat Nat Haz Risk 1–13Google Scholar
  23. Ghazi A, Moghadas NH, Sadeghi H, Ghafoori M, Lashkaripur GR (2015) Empirical relationships of shear wave velocity, SPT-N value and vertical effective stress for different soils in Mashhad, Iran. Ann Geophys 58(3):1–12Google Scholar
  24. Gómez-Arredondo CM, Montalvo-Arrieta JC, Iglesias-Mendoza A, Espindola-Castro VH (2016) Relocation and seismotectonic interpretation of the seismic swarm of August–December of 2012 in the Linares area, northeastern Mexico. Geofis Int 55(2):95–106Google Scholar
  25. Gosar A (2010) Site effects and soil-structure resonance study in the Kobarid basin (NW Slovenia) using microtremors. Nat Hazards Earth Syst Sci 10:761–772CrossRefGoogle Scholar
  26. Hanumantharao C, Ramana GV (2008) Dynamic soil properties for microzonation of Delhi, India. J Earth Syst Sci 117:719–730CrossRefGoogle Scholar
  27. Holzer TL, Bennett MJ, Noce TE, Tinsley JC (2005) Shear-wave velocity of surficial geologic sediments in northern California: statistical distributions and depth dependence. Earthquake Spectra 21(1):161–177CrossRefGoogle Scholar
  28. Ibs-von Seht M, Wohlenberg J (1999) Microtremor measurements used to map thickness of soft sediments. B Seismol Soc Am 89:250–259Google Scholar
  29. Iyisan R (1996) Correlations between shear wave velocity and in-situ penetration test results. Digest 96:371–374Google Scholar
  30. Jafari MK, Shafiee A, Razmkhah A (2002) Dynamic properties of fine grained soils in south of Tehran. J Seismol Earthq Eng 4:25–35Google Scholar
  31. Jibson RW, Harp EL (2012) Extraordinary distance limits of landslides triggered by the 2011 mineral, Virginia, earthquake. Bull Seismol Soc Am 102(6):2368–2377CrossRefGoogle Scholar
  32. Kanai (1966) Conference on cone penetrometer. The Ministry of Public Works and Settlement, Ankara, TurkeyGoogle Scholar
  33. Kirar B, Maheshwari BK, Muley P (2016) Correlation between shear wave velocity (vs) and SPT resistance (N) for Roorkee region. Int J Geosynth Ground Eng 2(9):1–11Google Scholar
  34. Lee CT, Tsai BR (2008) Mapping VS30 in Taiwan. Terr Atmos Ocean Sci 19(6):671–682CrossRefGoogle Scholar
  35. Lermo J, Chávez-García FJ (1994) Are microtremors useful in site response evaluation? Bull Seismol Soc Am 84:1350–1364Google Scholar
  36. Liam Finn WD, Onur T, Ventura CE (2004) Microzonation: developments and applications. In: Ansal A (ed) Recent advances in earthquake geotechnical engineering and microzonation. Springer, pp 3–26Google Scholar
  37. Maheswari RU, Boominathan A, Dodagoudar GR (2010) Use of surface waves in statistical correlations of shear wave velocity and penetration resistance of Chennai soils. Geotech Geol Eng 28:119–137CrossRefGoogle Scholar
  38. Marto A, Choy Soon T, Kasim F, Suhatril M (2013) A correlation of shear wave velocity and standard penetration resistance. Electron J Geotech Eng 18:463–471Google Scholar
  39. McKee JW, Jones NW, Long LE (1984) History of recurrent activity along a major fault in northeastern Mexico. Geology 12:103–107CrossRefGoogle Scholar
  40. McKee JW, Jones NW, Long LE (1990) Stratigraphy and provenance of strata along the San Marcos fault, central Coahuila, Mexico. Geol Soc Am Bull 102:593–614CrossRefGoogle Scholar
  41. Montalvo Arrieta JC, de León Gómez H, Valdés González C (2006) LNIG: Nueva estación sísmica digital en el noreste de México. Ingenierías 9:17–24Google Scholar
  42. Montalvo-Arrieta JC, Cavazos-Tovar P, de León IN, Alva-Niño E, Medina-Barrera F (2008) Mapping seismic site classes in Monterrey Metropolitan Area, northeast Mexico. Boletín Sociedad Geológica Mexicana 60(2):147–157CrossRefGoogle Scholar
  43. Montalvo-Arrieta JC, Sosa-Ramírez RL, Paz-Martínez EG (2015) Relationship between MMI data and ground shaking in the state of Nuevo León, Northeastern Mexico. Seismol Res Lett 86(5):1489–1495CrossRefGoogle Scholar
  44. Muehlberger WR, Belcher RC, Goetz LK (1978) Quaternary faulting in trans-Pecos Texas. Geology 6:337–340CrossRefGoogle Scholar
  45. Natali SG, Sbar ML (1982) Seismicity in the epicentral region of the 1887 northeastern Sonoran earthquake, Mexico. Bull Seismol Soc Am 72:181–196Google Scholar
  46. Ortiz-Urbilla A, Tolson G (2004) Interpretación estructural de una sección sísmica en la región Arcabuz-Culebra de la Cuenca de Burgos, NE de México. Revista Mexicana de Ciencias Geológicas 21:226–235Google Scholar
  47. Padilla y Sánchez RJ (1985) Las estructuras de la Curvatura de Monterrey, Estados de Coahuila, Nuevo León, Zacatecas y San Luis Potosí. Universidad Autónoma de México, Revista 6:1–20Google Scholar
  48. Panza GF, Irikura K, Kouteva M, Peresan A, Wang Z, Saragoni R (2011) Advanced seismic hazard assessment. Pure App Geophys 168:1–9CrossRefGoogle Scholar
  49. Ramos-Zúñiga LG, Medina-Ferrusquía HC, Montalvo-Arrieta JC (2012a) Patrones de Sismicidad en la Curvatura de Monterrey, Noreste de México. Revista Mexicana de Ciencias Geológicas 29(2):572–589Google Scholar
  50. Ramos-Zúñiga LG, Montalvo-Arrieta JC, Pérez-Campos X, Valdés-González C (2012b) Seismic characterization of station LNIG as a reference site in Northeast Mexico. Geofis Int 51:185–195Google Scholar
  51. Rodríguez-Marek A, Bray JD, Abrahamson NA (2001) An empirical geotechnical seismic site response procedure. Earthquake Spectra 17:65–87CrossRefGoogle Scholar
  52. Ruíz-Martínez MA, Werner J (1997) Research into the quaternary sediments and climatic variations in NE Mexico. Quatern Int 43–44:145–151CrossRefGoogle Scholar
  53. Sánchez-Sesma FJ (1987) Site effects on strong ground motion. Soil Dyn Earthq Eng 6:124–132CrossRefGoogle Scholar
  54. Sánchez-Sesma FJ, Rodríguez M, Iturrarán-Viveros U, Luzón F, Campillo M, Margerin L, García-Jerez A, Suarez M, Santoyo MA, Rodríguez-Castellanos A (2011) A theory for microtremor H/V spectral ratio: application for a layered medium. Geophys J Int 186:221–225CrossRefGoogle Scholar
  55. Site Effects Assessment Using Ambient Excitations (SESAME) European research project WP12 (2005) Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations: measurements, processing and interpretation. Deliverable D23.12Google Scholar
  56. Stewart JP, Liu AH, Choi Y (2003) Amplification factors for spectral acceleration in tectonically active regions. Bull Seismol Soc Am 93:332–352CrossRefGoogle Scholar
  57. Technical Committee for Earthquake Geotechnical Engineering, TC4, of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE) (1999) Manual for zonation on seismic geotechnical hazards (revised version). Japanese Geotechnical Society, 209 ppGoogle Scholar
  58. Tinsley JC, Fumal TE (1985) Mapping quaternary sedimentary deposits for areal variations in shaking response. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles Region. U.S. Geological Survey Professional Paper 1360, pp 101–126Google Scholar
  59. Trifunac MD, Brady AG (1976) Correlations of peak acceleration, velocity and displacement with earthquake magnitude, distance and site conditions. Earthquake Eng Struc Dyn 4:455–471CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jorge A. Salinas-Jasso
    • 1
  • Juan C. Montalvo-Arrieta
    • 1
    Email author
  • Efraín Alva-Niño
    • 1
  • Ignacio Navarro de León
    • 1
  • Juan M. Gómez-González
    • 2
  1. 1.Facultad de Ciencias de la TierraUniversidad Autónoma de Nuevo LeónLinaresMexico
  2. 2.Centro de GeocienciasUniversidad Nacional Autónoma de MéxicoQuerétaroMexico

Personalised recommendations