Advertisement

Swelling laws for clay-sulfate rocks revisited

  • Christoph Butscher
  • Simon Breuer
  • Philipp Blum
Original Paper

Abstract

The swelling of clay-sulfate rocks is a major threat in tunnel engineering and in the installation of shallow geothermal systems. It can cause serious damage to tunnels and buildings; and produce high additional costs during tunnel construction and operation. The swelling may result in a heave of the tunnel invert, destruction of the lining or uplift of the entire tunnel section. Heave–pressure–time relations are therefore needed in order to predict the mechanical behavior of swelling rock as a basis for an optimal tunnel design. The present study revisits different stress–strain relations (“swelling laws”) for swelling clay-sulfate rocks proposed by various authors. Published laboratory data from oedometric swelling tests are presented that may confirm the proposed stress–strain relationships. These data are re-examined by testing each of the different data sets with the different proposed relations. One main outcome of this study is that different interpretations of stress–strain data are possible and none of the swelling laws proposed in the literature could be generally confirmed or rejected. We conclude that a generally valid swelling law in the form of a stress–strain relation does not yet exist. A promising approach to describe the swelling behavior of clay-sulfate rocks, however, is process-based numerical modeling, which is also briefly introduced in this study.

Keywords

Swelling law Clay-sulfate rocks Tunneling Review 

References

  1. Alonso EE, Olivella S (2008) Modelling tunnel performance in expansive gypsum claystone. 12th International Conference on Computer Methods and Advances in Geomechanics, Goa, 2008, pp 891–910Google Scholar
  2. Alonso EE, Ramon A (2013) Heave of a railway bridge induced by gypsum crystal growth: Field observations. Geotechnique 63:707–719CrossRefGoogle Scholar
  3. Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Geotechnique 63:584–612CrossRefGoogle Scholar
  4. Anagnostou G (1992) Untersuchungen zur Statik des Tunnelbaus in quellfähigem Gebirge (Investigations of tunnel statics in swelling rock). PhD thesis, ETH ZurichGoogle Scholar
  5. Anagnostou G (1993) A model for swelling rock in tunnelling. Rock Mech Rock Eng 26:307–331CrossRefGoogle Scholar
  6. Benz T, Wehnert M (2010) Schadensfall Staufen. Berechnungen der zeitlichen Entwicklung der Hebungsprozesse. Zweidimensionale Finite Elemente Berechnungen. (Case of Staufen. Calculation of temporal development of the heave processes. Two-dimensional finite element calculations.). Unpublished reportGoogle Scholar
  7. Berdugo IR, Alonso EE, Romero E, Gens A (2009a) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part I: case studies from Baden-Württemberg. Revista Epsilon 12:1–17Google Scholar
  8. Berdugo IR, Alonso EE, Romero E, Gens A (2009b) Tunnelling and swelling in Triassic sulphate-bearing rocks. Part II; case studies from Jura Mountains. Revista Epsilon 12:18–30Google Scholar
  9. BMV (ed) (1975) Durchführung eines felsmechanischen Großversuches in der Nordröhre des Wagenburgtunnels in Stuttgart (A rock mechanical large-scale experiment in the northern tube of the Wagenburg tunnel in Stuttgart). Bundesministerium für Verkehr, Straßenbau und Straßenverkehrstechnik 184, 195Google Scholar
  10. Butscher C, Huggenberger P, Auckenthaler A, Banninger D (2011) Risk-oriented approval of borehole heat exchangers. Grundwasser 16:13–24CrossRefGoogle Scholar
  11. Butscher C, Mutschler T, Blum P (2016) Swelling of clay-sulfate rocks: A review of processes and controls. Rock Mech Rock Eng 49:1533–1549CrossRefGoogle Scholar
  12. DGGT (1986) Empfehlung Nr. 11 des Arbeitskreises 19—Versuchstechnik Fels—der Deutschen Gesellschaft für Geotechnik: Quellversuche an Gesteinsproben (Recommendation no. 11 of the working party 19—Rock Testing—of the German Geotechnical Society: Swelling experiments on rock samples). Bautechnik 63:100–104Google Scholar
  13. Einstein HH (1996) Tunnelling in difficult ground—Swelling behaviour and identification of swelling rocks. Rock Mech Rock Eng 29:113–124CrossRefGoogle Scholar
  14. Flückiger A, Nüesch R, Madsen FT (1994) Anhydritquellung (Anhydrite swelling). In: Kohler EE (ed) Jahrestagung DGGT, Regensburg, Germany, 13-14 September 1994. Berichte der Deutschen Ton- und Tonmineralgruppe, pp 146–153Google Scholar
  15. Goldscheider N, Bechtel TD (2009) Editors’ message: The housing crisis from underground-damage to a historic town by geothermal drillings through anhydrite, Staufen, Germany. Hydrogeol J 17:491–493CrossRefGoogle Scholar
  16. Grimm M, Stober I, Kohl T, Blum P (2014) Schadensfallanalyse von Erdwärmesondenbohrungen in Baden-Württemberg (Damage event analysis of drilling borehole heat exchangers in Baden-Württemberg, Germany). Grundwasser 19:275–286CrossRefGoogle Scholar
  17. Grob H (1972) Schwelldruck im Belchentunnel (Swelling pressure in the Belchen tunnel). Paper presented at the International Symposium for Tunneling, Luzern, Switzerland, 11–14 September 1992, pp 99–119Google Scholar
  18. Heidkamp H, Katz C (2004) The swelling phenomenon of soils: proposal of an efficient continuum modelling approach. In: Schubert W (ed) EUROCK 2004 and 53rd Geomechanics Colloquium. Austria, Salzburg, pp 6–8Google Scholar
  19. Huder J, Amberg G (1970) Quellung in Mergel, Opalinuston und Anhydrit (Swelling in marl, Opalinus clay and anhydrite). Schweizer Bauzeitung 88:975–980Google Scholar
  20. ISRM (1994) Comments and recommendations on design and analysis procedures for structures in argillaceous swelling rock. Int J Rock Mech Mining Sci 31:535–546CrossRefGoogle Scholar
  21. ISRM (1999) Suggested methods for laboratory testing of swelling rocks. Int J Rock Mech Min Sci 36:291–306CrossRefGoogle Scholar
  22. Jeschke AA, Vosbeck K, Dreybrodt W (2001) Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochim Cosmochim Acta 65:27–34CrossRefGoogle Scholar
  23. Karlsruhe TH (2003) Langzeit-Schwellversuche an Probenmaterial aus dem Freudensteintunnel (Long-term swelling tests with samples from the Freudenstein tunnel). Unpublished reportGoogle Scholar
  24. Katzenbach R, Bergmann C, Leppla S (2010) Langzeituntersuchungen zum Schwell- und Quellverhalten von Anhydrit (long term experiments of the swelling behaviour of anhydrite). Bauingenieur 85:113–117Google Scholar
  25. Kirschke D (1995) Neue Versuchstechniken und Erkenntnisse zum Anhydritschwellen (New experimental techniques and insights in anhydrite swelling). Taschenbuch für den Tunnelbau 1996, Verlag Glückauf, Essen, Germany, pp 203–225Google Scholar
  26. Kovári K, Chiaverio F (2007) Modular yielding support for tunnels in heavily swelling rock. STUVA Conference 07, Cologne, Germany, 26-29 November 2007Google Scholar
  27. Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4:143–156CrossRefGoogle Scholar
  28. Madsen FT, Nüesch R (1991) The swelling behaviour of clay-sulfate rocks. In: Wittke W (ed) 7th International Congress on Rock Mechanics, Aachen, Germany, 16–20 September 1991. Balkema, Rotterdam, pp 285–288Google Scholar
  29. Madsen FT, Flückiger A, Hauber L, Jordan P, Voegtli B (1995) New investigations on swelling rocks in the Belchen tunnel, Switzerland. In: Fujii T (ed) 8th International Congress on Rock Mechanics, Tokyo, Japan, 22–30 September 1995. Balkema Publishers, Taylor & Francis, The Netherlands, pp 263–267Google Scholar
  30. Oldecop L, Alonso E (2012) Modelling the degradation and swelling of clayey rocks bearing calcium-sulphate. Int J Rock Mech Min Sci 54:90–102Google Scholar
  31. Pierau B, Kiehl JR (1995) Widerstands- und Ausweichprinzip: Vergleich zweier Entwurfsmethoden für Tunnelbauten in quellfähigem Gebirge (Resistance and yield principle: comparison of two design approaches for tunnels in swelling rock). Taschenbuch für den Tunnelbau 1996. Verlag Glückauf, Essen, pp 226–247Google Scholar
  32. Pimentel E (2007a) A laboratory testing technique and a model for the swelling behavior of anhydritic rock. 11th Congress of the International Society for Rock Mechanics, Lisbon, 9–13 July 2007Google Scholar
  33. Pimentel E (2007b) Quellverhalten von Gesteinen—Erkenntnisse aus Laboruntersuchungen (Swelling bahvior of rocks—Insights from laboratory investigations). In: Frühjahrstagung der Schweizerischen Gesellschaft für Boden- und Felsmechanik, Fribourg, Switzerland, 27 April 2007. Mitteilungen der Schweizerischen Gesellschaft für Boden- und Felsmechanik 154, pp 11–20Google Scholar
  34. Pimentel E (2015) Existing methods for swelling tests—a critical review. Energy Procedia 76:96–105CrossRefGoogle Scholar
  35. Pimentel E, Anagnostou G (2013) New apparatus and experimental setup for long-term swelling tests on sulphatic claystones. Rock Mech Rock Eng 46:1271–1285CrossRefGoogle Scholar
  36. Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth Géotechnique 63:720–732Google Scholar
  37. Rauh F, Spaun G, Thuro K (2006) Assessment of the swelling potential of anhydrite in tunnelling projects. In: Culshaw M, Reeves H, Spink T, Jefferson I (eds) 10th IAEG international congress, Nottingham, UK, September 6–10, 2006. IAEG Engineering geology for tomorrow’s cities, paper No 473, 8 ppGoogle Scholar
  38. Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br. (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br.). Geotechnik 36:147–159CrossRefGoogle Scholar
  39. Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 39:233–245CrossRefGoogle Scholar
  40. Sass I, Burbaum U (2012) Geothermische Bohrungen in Staufen im Breisgau: Schadensursachen und Perspektiven (Geothermal drillings in Staufen/Breisgau: Causes of damage and perspectives). Geotechnik 35:198–205CrossRefGoogle Scholar
  41. Steiner W (1993) Swelling rock in tunnels: rock characterization, effect of horizontal stresses and construction procedures. Int J Rock Mech Mining Sci Geomech Abstracts 30:361–380CrossRefGoogle Scholar
  42. Vergara MR, Balthasar K, Triantafyllidis T (2014) Comparison of experimental results in a testing device for swelling rocks. Int J Rock Mech Min Sci 66:177–180Google Scholar
  43. Wahlen R (2009) Validierung eines Berechnungsverfahrens für Tunnelbauwerke in quellfähigem Gebirge (Validation of a computational method for tunnels in swelling rock). Geotechnik in Forschung und Praxis WBI-Print vol 17, Verlag Glückauf, EssenGoogle Scholar
  44. Wahlen R, Wittke W (2009) Kalibrierung der felsmechanischen Kennwerte für Tunnelbauten in quellfähigem Gebirge (Calibration of the rock mechanical parameters for tunnels in swelling rock). Geotechnik 32:226–233Google Scholar
  45. Wittke M (2003) Begrenzung der Quelldrücke durch Selbstabdichtung beim Tunnelbau im anhydritführenden Gebirge (Limitation of swelling pressures by self-sealing in tunneling in anhydrite-bearing rock). Geotechnik in Forschung und Praxis WBI-Print vol 13, Verlag Glückauf, EssenGoogle Scholar
  46. Wittke W (2007) New high-speed railway lines Stuttgart 21 and Wendlingen-Ulm: Approximately 100 km of tunnels. Underground Space—the 4th Dimension of Metropolises, Vols 1–3, pp 771–778Google Scholar
  47. Wittke W, Wittke M, Wahlen R (2004) The source law of anhydrite containing Gipskeuper. Geotechnik 27:112–117Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christoph Butscher
    • 1
  • Simon Breuer
    • 1
  • Philipp Blum
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT)Institute for Applied Geosciences (AGW)KarlsruheGermany

Personalised recommendations