Advertisement

The behaviour of consolidated Neapolitan yellow Tuff against salt weathering

  • Mauro F. La Russa
  • Silvestro A. Ruffolo
  • Mónica Álvarez de Buergo
  • Michela Ricca
  • Cristina M. Belfiore
  • Antonino Pezzino
  • Gino M. Crisci
Original Paper

Abstract

Salt crystallization is a strong weathering agent in porous building materials. The crystallization pressure exerted by salt crystals, growing in confined pores, is found to be one of the main causes for damage. This paper presents the results of laboratory experimentation carried out on the Neapolitan Tuff, a pyroclastic rock largely used in Campanian architecture. Several specimens, collected from a historical quarry near the city of Naples, were treated with two different consolidating products: a suspension of nanosilica in water (Syton X30®) and ethyl silicate (Estel 1000®) dispersed in organic solvent (TEOS). Untreated and treated samples were then artificially degraded using salt crystallization tests in order to assess the effectiveness of consolidation treatments. A systematic approach, including mercury intrusion porosimetry, peeling tests and point load test, was employed to evaluate the correlation between the salt crystallization and the micro-structural features of the tuff. In addition, in order to make a correlation between porous structure of materials and susceptivity to salt crystallization, the calculation of the crystallization pressures was performed. In all samples, at the early stage of crystallization, the presence of gypsum was revealed, coming from the precipitation of sulphate ions, introduced during the test, and sodium ions, coming from the zeolites within the stone. Results showed that both consolidants increase the resistance of tuff to salt crystallization, although they induce an increase in crystallization pressure. Ethyl silicate, however, shows a better behaviour in terms of superficial cohesion, even after several degradation cycles.

Keywords

Neapolitan Tuff Salt weathering Stone consolidation Nanosilica 

Notes

Acknowledgments

This research was funded by POR Calabria FESR project “NANOPROTECH” (NANO PROtection TEchnology for Cultural Heritage).

References

  1. Aloise P, Ricca M, La Russa MF, Ruffolo SA, Belfiore CM, Padeletti G, Crisci GM (2013) Diagnostic analysis of stone materials from under water excavations: the case study of the Roman archaeological site of Baia (Naples, Italy). Appl Phys A Mat Sci Process 114:655–662CrossRefGoogle Scholar
  2. Amoroso GG, Fassina V (1983) Stone decay and conservation: atmospheric pollution, cleaning, consolidation and protection. Elsevier, AmsterdamGoogle Scholar
  3. Angeli M, Bigas JP, Benavente D, Menendez B, Herbert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:187–195CrossRefGoogle Scholar
  4. Arnold A, Zehnder K (1989) Salt weathering on monuments. In: Zezza (ed) 1st International Symposium de La conservazione dei monumenti nel bacino del Mediterraneo, Influenza dell’ambiente costiero e dello spray marino sulla pietra calcarea e sul marmo. Bari, Italy, pp 31–58Google Scholar
  5. ASTM D 5731 02 (2002) Standard test method for determination of the point load strength index of rock. doi: 10.1520/D5731-02
  6. Chelazzi D, Poggi G, Jaidar Y, Toccafondi N, Giorgi R, Baglioni P (2013) Hydroxide nanoparticles for cultural heritage: consolidation and protection of wall paintings and carbonate materials. J Colloid Interf Sci 392:42–49CrossRefGoogle Scholar
  7. de' Gennaro M, Calcaterra D, Cappelletti P, Langella A, Morra V (2000) Building stone and related weathering in the architecture of the ancient city of Naples. J Cult Herit 1:399–414CrossRefGoogle Scholar
  8. de’ Gennaro M, Franco E, Langella A, Mirra P, Morra V (1982) Le phillipsiti dei tufi gialli del napoletano. Period Miner 51:287–310Google Scholar
  9. de’ Gennaro M, Langella A (1996) Italian zeolitized rocks of technological interest. Miner Depos 31:452–472CrossRefGoogle Scholar
  10. Di Benedetto C, Bianchin S, Cappelletti P, Colella A, de' Gennaro M, Favaro M, Gambirasi A, Langella A, Luca G, Soranzo M (2012) The Neapolitan yellow tuff and the Vicenza stone: experimental investigations about effectiveness of antiswelling treatment. In: 12th International congress on the deterioration and conservation of stone Columbia University, New YorkGoogle Scholar
  11. Di Benedetto C, Bianchin S, Langella A, Favaro M, Gambirasi A, Colella A, Luca G, Soranzo M, de’ Gennaro M, Cappelletti P (2013) The Neapolitan Yellow Tuff: experimental investigations about effectiveness of antiswelling treatment. Built Heritage: Monitoring Conservation Management, pp 1170–1177Google Scholar
  12. Drdàcky M, Lesàk J, Rescic S, Slìzkovà Z, Tiano P, Valach J (2013) Standardization of peeling test for assessing the cohesion and consolidation characteristics of historic stone surfaces. Mater Struct 45:505–520CrossRefGoogle Scholar
  13. Egloffstein P, Kertesz P, Althaus E (1996) Vulkanische Tuffe als Werksteine: Zerfallprozesse und Konservierungsmoglichkeiten. Erhalten historisch bedeutsamer Bauwerke. Ernst, Sohn, pp 183–190Google Scholar
  14. Everett DH (1961) The thermodynamics of frost damages to porous solids. Trans Faraday Soc 57:1541–1551CrossRefGoogle Scholar
  15. Fitzner B, Snethlage R (1982) Ueber Zusammenhange zwischen Salzkristallisationsdruck und Porenradienverteilung. GP News L 3:13–24Google Scholar
  16. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454CrossRefGoogle Scholar
  17. Kim EK, Won J, Do J, Kim SD, Kang YS (2009) Effects of silica nanoparticle and GPTMS addition on TEOS-based stone consolidants. J Cult Herit 10:221–241CrossRefGoogle Scholar
  18. Koniorczyk M, Gawin D (2012) Modelling of salt crystallization in building materials with microstructure-Poromechanical approach. Constr Build Mater 36:860–873CrossRefGoogle Scholar
  19. La Russa MF, Barone G, Belfiore CM, Mazzoleni P, Pezzino A (2011) Application of protective products to ‘‘Noto’’ calcarenite (south-eastern Sicily): a case study for the conservation of stone materials. Environ Earth Sci 62:1263–1272CrossRefGoogle Scholar
  20. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Palermo AM, Guzzi MT, Crisci GM (2012) Multifunctional TiO2 coatings for cultural heritage. Prog Org Coat 74:186–191CrossRefGoogle Scholar
  21. La Russa MF, Ruffolo SA, Belfiore CM, Aloise P, Randazzo L, Rovella N, Pezzino A, Montana G (2013) Study of the effects of salt crystallization on degradation of limestone rocks. Period Mineral 82:113–127Google Scholar
  22. La Russa MF, Macchia A, Ruffolo SA, De Leo F, Barberio M, Barone P, Crisci GM, Urzì C (2014a) Testing the antibacterial activity of doped TiO2 for preventing biodeterioration of cultural heritage building materials. Int Biodeter Biodegr 96:87–96CrossRefGoogle Scholar
  23. La Russa MF, Ruffolo SA, Rovella N, Belfiore CM, Pogliani P, Pelosi C, Andaloro M, Crisci GM (2014b) Cappadocian ignimbrite cave churches: stone degradation and conservation strategies. Period Mineral 83:187–206Google Scholar
  24. La Russa MF, Belfiore CM, Fichera GV, Maniscalco R, Calabrò C, Ruffolo SA, Pezzino A (2015) The behaviour to weathering of the Hyblean limestone in the baroque architecture of the Val di Noto (SE Sicily): an experimental study on the “calcare a lumachella” stone. Constr Build Mater 77:7–19CrossRefGoogle Scholar
  25. Langella A, Calcaterra D, Cappelletti P, Colella A, D’Albora MP, Morra V, de' Gennaro M (2009) Lava stones from Neapolitan volcanic districts in the architecture of Campania region, Italy. Environ Earth Sci 59:145–160CrossRefGoogle Scholar
  26. Lazzarini L, Lombardi G, Marconi F, Meucci C (1996) New data on the characterisation and conservation of the Easter Island’s pyroclastics used for the Moais. In: Riederer J (ed) Proceedings of the 8th international congress on deterioration and conservation of stone. Moller, Berlin 2:1147–1157Google Scholar
  27. Normal 43/93 (1993) Misure colorimetriche di superfici opache. In: Raccomandazioni Normal: alterazioni dei materiali lapidei e trattamenti conservativi: proposte per l'unificazione dei metodi sperimentali di studio e di controllo, Roma CNR: ICRGoogle Scholar
  28. Orsi G, Civetta L, D’Antonio M, Di Girolamo P, Piochi M (1995) Step-filling and development of a three-layer magma chamber: the Neapolitan Yellow Tuff case history. J Volcanol Geotherm Res 67:291–312CrossRefGoogle Scholar
  29. Rossi-Manaresi R, Tucci A (1991) Pore structure and the disruptive or cementing effect of salt crystallization in various types of stone. Stud Conserv 36:53–58Google Scholar
  30. Ruedrich J, Kirchner D, Seidel M, Siegesmund S (2005) Beanspruchungen von Naturwerksteinen durch Salz- und Eiskristallisation im Porenraum sowie hygrische Dehnungsvorgange. Zeitschrift der Deutschen Geologischen Gesellschaft 156:59–73CrossRefGoogle Scholar
  31. Ruffolo SA, La Russa MF, Malagodi M, Oliviero Rossi C, Palermo AM, Crisci GM (2010) ZnO and ZnTiO3 nanopowders for antimicrobial stone coating. Appl Phys A 100:829–834CrossRefGoogle Scholar
  32. Ruffolo SA, La Russa MF, Aloise P, Belfiore CM, Macchia A, Pezzino A, Crisci GM (2013) Efficacy of nanolime in restoration procedures of salt weathered limestone rock. Appl Phys A 114:753–758CrossRefGoogle Scholar
  33. Scarpati C, Cole P, Perrotta A (1993) The Neapolitan yellow Tuff – a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull Volcan 55:343–356CrossRefGoogle Scholar
  34. Scherer GW (1999) Crystallization in pores. Cem Concr Res 29:1347–1358CrossRefGoogle Scholar
  35. Scherer GW (2004) Stress from crystallization of salt. Cem Concr Res 34:1613–1624CrossRefGoogle Scholar
  36. Steindlberger E (2004) Volcanic tuff from Hesse (Germany) and their weathering behavior. Special issue: stone decay hazards. Environ Geol 46:378–390CrossRefGoogle Scholar
  37. Stück H, Forgó LZ, Rüdrich J, Siegesmund S (2008) Török Á (2008) The behaviour of consolidated volcanic tuffs: weathering mechanisms under simulated laboratory conditions. Environ Geol 56:699–713CrossRefGoogle Scholar
  38. UNI EN 12370:2001 (2001) Natural stone test methods - Determination of resistance to salt crystallisationGoogle Scholar
  39. Wellman HW, Wilson AT (1968) Salt weathering or fretting. In: Fairbridge (ed) Geomorphology, Part of the series Encyclopedia of Earth Science, pp 968–970Google Scholar
  40. Yu S, Oguchi CT (2010) Role of pore size distribution in salt uptake, damage, and predicting salt susceptibility of eight types of Japanese building stones. Eng Geol 115:226–236CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Mauro F. La Russa
    • 1
  • Silvestro A. Ruffolo
    • 1
  • Mónica Álvarez de Buergo
    • 2
  • Michela Ricca
    • 1
  • Cristina M. Belfiore
    • 3
  • Antonino Pezzino
    • 3
  • Gino M. Crisci
    • 1
  1. 1.Dipartimento di Biologia, Ecologia e Scienze della TerraUniversità della CalabriaArcavacata Di RendeItaly
  2. 2.Instituto de Geociencias IGEO (CSIC-UCM)MadridSpain
  3. 3.Dipartimento di Scienze Biologiche, Geologiche e Ambientali-Sezione di Scienze della TerraUniversità di CataniaCataniaItaly

Personalised recommendations