Advertisement

Bulletin of Engineering Geology and the Environment

, Volume 75, Issue 4, pp 1429–1444 | Cite as

Grouping discontinuities in representative sets: influence on the stability analysis of slope cuts

  • A. T. Nguyen
  • V. Merrien-SoukatchoffEmail author
  • M. Vinches
  • M. Gasc-Barbier
Original Paper
  • 323 Downloads

Abstract

Based on their orientation, different methods of grouping discontinuities in sets can be used; thus, three grouping methods and their influence on subsequent stability analyses are compared in this study. The first method combines the approaches of Priest, Shanley, Mathab and Yegulalp; the second method consists of grouping discontinuities manually based on an examination of density contour plots; and the third method is based on the spectral method. Unlike the others, the first method allows for the automatic determination of the number of discontinuity sets. The first and third methods were programmed in the Mathematica software environment, while DIPS software was used for the second method. Depending on the grouping process used, each discontinuity or only a portion of all discontinuities is assigned to a set. Therefore, the results in terms of the number of sets; the mean and dispersion of the sets; and the spacing of a given set differ with different methods. The consequences of a statistical analysis of orientation on the stability analysis were studied with simulations using RESOBLOK software, which couples the construction of 3D geometric block systems and a quick, iterative, limit-equilibrium stability analysis. Different fracture networks were generated with variable input parameters that were derived from previous statistical analyses of orientation and spacing. The software provides statistical outputs, such as the number and volume of unstable blocks, that can be compared across different cases. An application in a cutting slope near Ax-les-Thermes is presented; the influence of the grouping methods and of the uncertainty of slope orientation on stability indicators is presented. A synthetic indicator of global stability is also proposed.

Keywords

Discontinuities Grouping of discontinuities Discrete fracture network (DFN) Modelling Stability analysis 

Résumé

Il existe différentes méthodes de regroupement des discontinuités en familles en fonction de leur orientation. Trois méthodes de regroupement sont comparées ainsi que leur influence sur l’analyse de stabilité. La première méthode combine les approches de Priest, Shanley, Mathab et Yegulalp. La seconde consiste à regrouper “manuellement” les discontinuités en se basant sur les contours d’isodensité de fractures et la troisième se base sur la méthode spectrale. La première et la troisième méthode ont été programmées dans l’environnement Mathematica tandis que le logiciel DIPS a été utilisé pour le regroupement “manuel”. Selon la méthode de regroupement utilisée, l’ensemble des discontinuités ou seulement une partie d’entre elles sont affectées à une famille. La moyenne et la dispersion des orientations, ainsi que l’espacement entre fractures, diffèrent d’une méthode à l’autre. Les conséquences de l’analyse statistique des orientations sur l’analyse de stabilité sont étudiées par des simulations réalisées avec le logiciel RESOBLOK. Ce code associe une génération géométrique stochastique 3D d’un massif fracturé et une analyse rapide de stabilité, itérative, basée sur l’équilibre limite. Différents réseaux de fractures peuvent être engendrés en fonction des paramètres d’entrée statistiques issus des regroupements différents en familles basés sur l’orientation et de l’espacement calculé par famille. Le logiciel fournit en sortie des résultats stochastiques tels que le nombre et le volume de blocs instables qui peuvent être comparés d’un cas à l’autre. Une application à un talus en déblai à proximité d’Ax-les-Thermes est présentée: les méthodes de regroupement et les variations possibles de l’orientation du talus influencent les indicateurs de stabilité. Un indicateur synthétique de stabilité global est également proposé.

Mots clés

Analyse structurale Discontinuités Regroupement des discontinuités Modélisation Analyse de stabilité 

Notes

Acknowledgments

The authors wish to thank M. Thierry Verdel, Professor GéoRessources Laboratory, Ecole des Mines de Nancy, Université de Lorraine, France, for providing help with the Mathematica software used in this study.

References

  1. Andrew YN, Michael IJ, Weiss Y (2002) On spectral clustering: analysis and an algorithm. In: Advances in neural information processing systems, vol 14. MIT Press, Cambridge, pp 849–856Google Scholar
  2. Baroudi H, Hantz D, Asof M, Piguet JP (1992) Bench stability in open pit mines: a methodology for jointed rock masses. In: Regional conference on fractured and jointed rock massesGoogle Scholar
  3. Barton NR (2012) From empiricism, through theory, to problem solving in rock engineering. In: Qian Q, Zhou Y (eds) Harmonising rock engineering and the environment. Taylor & Francis Group, London, p 13Google Scholar
  4. Diederichs MS (1990) Dips an interactive and graphical approach to the analysis of orientation based data. Univercity of Toronto, TorontoGoogle Scholar
  5. Gasc-Barbier M, Ballion A, Virely D (2008) Design of large cuttings in jointed rock. Bull Eng Geol Environ 67(2):227–235CrossRefGoogle Scholar
  6. Gasc-Barbier M, Fouché O, Gaillard C (2010) Etude comparée de la fracturation observable sur carottes de forage et obtenue par diagraphie. Application au marbre de Saint-Béat (Haute-Garonne). Rev Fr Géotech 133:37–49Google Scholar
  7. Godefroy J, Merrien-Soukatchoff V, Gasc-Barbier M (2009) Stabilité de pentes rocheuses fracturées. Recherche des conditions aux limites pour un calcul à l’équilibre limite 3D. Journées AUGC 2009, p 17Google Scholar
  8. Hammah RE, Curran JH (1998) Fuzzy cluster algorithm for the automatic identification of joint sets. Int J Rock Mech Min Sci 35(7):889–905CrossRefGoogle Scholar
  9. Hammah RE, Curran JH (1999) On distance measures for the fuzzy K-means algorithm for joint data. Rock Mech Rock Eng 32(1):1–27CrossRefGoogle Scholar
  10. Heliot D (1988) Generating a blocky rock mass. Int J Rock Mech Min Sci Geomech Abstr 25(3):127–138CrossRefGoogle Scholar
  11. Jimenez-Rodriguez R (2008) Fuzzy spectral clustering for identification of rock discontinuity sets. Rock Mech Rock Eng 41(6):929–939CrossRefGoogle Scholar
  12. Jimenez-Rodriguez R, Sitar N (2006a) A spectral method for clustering of rock discontinuity sets. Int J Rock Mech Min Sci 43(7):1052–1061CrossRefGoogle Scholar
  13. Jimenez-Rodriguez R, Sitar N (2006b) Influence of stochastic discontinuity network parameters on the formation of removable blocks in rock slopes. Rock Mech Rock Eng 41(4):563–585CrossRefGoogle Scholar
  14. Kabbaj R, Baroudi H (1995) Traitement statistique de la fracturation. In: Séminaire Formation Modelisation des Milieux Discontinus. Ecole des Mines de Nancy, Nancy, France, p 42Google Scholar
  15. Klose C, Seo S, Obermayer K (2005) A new clustering appproach for partitioning directional data. Int J Rock Mech Min Sci 42(2):315–321Google Scholar
  16. Mahtab MA, Yegulalp TM (1982) A rejection criterion for definition of clusters in orientation data. American Rock Mechanics Association, The 23rd U, p 8Google Scholar
  17. Mardia KV (1975) Statistics of directional data. J R Stat Soc Ser B Methodol 37(3):349–393Google Scholar
  18. Meila M, Shi J (2001) Learning segmentation by random walks. In: neural information proceedings systems, vol 13, p 7Google Scholar
  19. Merrien-Soukatchoff V, Korini T, Thoraval A (2012) Use of an integrated discrete fracture network code for stochastic stability analyses of fractured rock masses. Rock Mech Rock Eng. doi: 10.1007/s00603-011-0136-7 Google Scholar
  20. Mirkin B (1996) Mathematical calssification and clustering. Kluwer Academic Publishers, MoscowCrossRefGoogle Scholar
  21. Pecher A (1989) SCHMIDTMAC—a program to display and analyze directional data. Comput Geosci 15(8):1315–1326CrossRefGoogle Scholar
  22. Picard P (1999) Classification sur des données hétérogènes. Université de la Réunion, RéunionGoogle Scholar
  23. Priest S (1993) Discontinuity analysis for rock engineering. Chapman & Hall, USACrossRefGoogle Scholar
  24. Rafiee A, Vinches M (2008) Application of geostatistical characteristics of rock mass fracture systems in 3D model generation. Int J Rock Mech Min Sci 45(4):644–652CrossRefGoogle Scholar
  25. Rockscience Inc (2002) DIPS Plotting, Analysis and Presentation of Structural Data Usinng Spherical Procjection Techniques.© 1989–2002 Rocscience Inc.Google Scholar
  26. Shanley RJ, Mahtab MA (1976) Delineation and analysis of clusters in orientation data. Math Geol 8(1):15Google Scholar
  27. Verdel T (1999) Le logiciel STAF. Nancy, FranceGoogle Scholar
  28. Warburton PM (1981) Vector stability analysis of an arbitrary polyhedral rock block with any number of free faces. Int J Rock Mech Min Sci Geomech Abstr 18(5):415–427CrossRefGoogle Scholar
  29. Wu J, Zhang ZX (2013) Cluster analysis for orientation data using difFUZZY method. In: Huang Y et al (eds), p 5Google Scholar
  30. Wyllie DC, Mah CW, Hoek E (2004) Rock slope engineering. Taylor & Francis Group, LondonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. T. Nguyen
    • 1
    • 2
  • V. Merrien-Soukatchoff
    • 3
    Email author
  • M. Vinches
    • 4
  • M. Gasc-Barbier
    • 5
  1. 1.GeoRessources, École des Mines de NancyUniversité de LorraineLorraineFrance
  2. 2.Faculty of MiningHanoi University of Mining and GeologyHanoiVietnam
  3. 3.Geodesy, Geomatics, Geosciences, Planning and Land Law Laboratory (GeF)CnamParisFrance
  4. 4.Laboratoire LGEIÉcole des Mines d’AlèsAlèsFrance
  5. 5.CeremaToulouseFrance

Personalised recommendations