Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julián’s stone

  • V. BrotonsEmail author
  • R. Tomás
  • S. Ivorra
  • A. Grediaga
Original Paper


The San Julián’s stone is the main material used to build the most important historical buildings in Alicante city (Spain). This paper describes the analysis developed to obtain the relationship between the static and the dynamic modulus of this sedimentary rock heated at different temperatures. The rock specimens have been subjected to heating processes at different temperatures to produce different levels of weathering on 24 specimens. The static and dynamic modulus has been measured for every specimen by means of the ISRM standard and ultrasonic tests, respectively. Finally, two analytic formulas are proposed for the relationship between the static and the dynamic modulus for this stone. The results have been compared with some relationships proposed by different researchers for other types of rock. The expressions presented in this paper can be useful for the analysis, using non-destructive techniques, of the integrity level of historical constructions built with San Julián’s stone affected by fires.


Non-destructive techniques Calcarenite stone Elastic dynamic modulus Elastic static modulus San Julián’s stone Temperature 



The authors would like to thank Dr. D. Benavente and Dr. J. Martínez from the Earth Sciences Department and Applied Petrology Laboratory from the University of Alicante for allowing us to perform ultrasonic tests on their laboratories and Dr. J. M. Ortega from the Department of Civil Engineering from the University of Alicante for kindly performing the mercury intrusion porosimetry test. The companies U.T.E. FCC Construcción, S.A. and Enrique Ortiz e Hijos Contratistas de Obras, S.A. provided the rock samples from the TRAM tunnel excavation. This work has been partially funded by the University of Alicante projects uausti11–11 and gre09–40, the Spanish National project BIA2012-34316, and the Generalitat Valenciana project gv/2011/044.


  1. AENOR (2007) UNE-EN 1936: Métodos de ensayo para piedra natural. Determinación de la densidad real y aparente y de la porosidad abierta y total, vol 1. Asociación Española de Normalización y Certificación (Ed.), Spain.
  2. Al-Shayea NA (2004) Effects of testing methods and conditions on the elastic properties of limestone rock. Eng Geol 74(1–2):139–156. doi: 10.1016/j.enggeo.2004.03.007 CrossRefGoogle Scholar
  3. Anon (1979) Classification of rocks and soils for engineering geological mapping part I: rock and soil materials. Bull Int Assoc Eng Geol 19(1):364–371. doi: 10.1007/bf02600503
  4. Brotons V, Ivorra S, Martínez-Martínez J, Tomás R, Benavente D (2013) Study of creep behavior of a calcarenite: San Julián's stone (Alicante). Mater Constr 62(312). doi: 10.3989/mc.2013.06412
  5. Ciccotti M, Mulargia E (2004) Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys J Int 157(1):474–477. doi: 10.1111/j.1365-246X.2004.02213.x CrossRefGoogle Scholar
  6. Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. Mem Am Assoc Pet Geol 1:108–121Google Scholar
  7. Eissa EA, Kazi A (1988) Relation between static and dynamic Young's Moduli of rocks. Int J Rock Mech Min Sci 25(6):479–482. doi: 10.1016/0148-9062(88)90987-4 CrossRefGoogle Scholar
  8. Ide JM (1936) Comparison of statically and dynamically determined young’s modulus of rocks. Proc Natl Acad Sci USA 22:81–92. doi: 10.1073/pnas.22.2.81 CrossRefGoogle Scholar
  9. ISRM (1977) Suggested method for petrographic description of rocks. ISRM Suggest Methods 15:41–45Google Scholar
  10. ISRM (1979) SM for determining the uniaxial compressive strength and deformability of rock materials. ISRM Suggest Methods 2:137–140Google Scholar
  11. King MS (1983) Static and dynamic elastic properties of rocks from the Canadian shield. Int J Rock Mech Min Sci 20(5):237–241. doi: 10.1016/0148-9062(83)90004-9 CrossRefGoogle Scholar
  12. Kjartansson E (1979) Constant Q-wave propagation and attenuation. J Geophys Res 84(NB9):4737–4748. doi: 10.1029/JB084iB09p04737 CrossRefGoogle Scholar
  13. Kolesnikov YI (2009) Dispersion effect of velocities on the evaluation of material elasticity. J Min Sci 45(4):347–354CrossRefGoogle Scholar
  14. Louis Cereceda M, Garcia-del-Cura MA, Spairani Y, de Blas D (2001) The civil palaces in Gravina Street, Alicante: building stones and salt weathering. Mater Constr 51(262):23–37CrossRefGoogle Scholar
  15. Martín JD (2004) Using XPowder: a software package for powder X-ray diffraction analysis. Spain, p 105. ISBN 84-609-1497-6
  16. Martinez-Martinez J, Benavente D, Garcia-del-Cura MA (2011) Spatial attenuation: the most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 119(3–4):84–95. doi: 10.1016/j.enggeo.2011.02.002 CrossRefGoogle Scholar
  17. Martinez-Martinez J, Benavente D, Garcia-del-Cura MA (2012) Comparison of the static and dynamic elastic modulus in carbonate rocks. Bull Eng Geol Environ 71(2):263–268. doi: 10.1007/s10064-011-0399-y CrossRefGoogle Scholar
  18. Montenat C (1977) Les basins néogènes et quaternaries du Levant d’Alicante à Murcie (Cordillères Bétiques orientales, Espagne). Stratigraphie, paléontologie et evolution dynamique. Doc Lab Geol, Univ Lyon 69, 345 ppGoogle Scholar
  19. Montenat C, Ott d’Estevou P, Coppier G (1990) Les basins néogènes entre Alicante et Cartagena. Doc Et Trav IGAL 12–13:313–368Google Scholar
  20. Vanheerden WL (1987) General relations between static and dynamic moduli of rocks. Int J Rock Mech Min Sci 24(6):381–385CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departamento de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de AlicanteAlicanteSpain
  2. 2.Departamento de Tecnología Informática y Computación, Escuela Politécnica SuperiorUniversidad de AlicanteAlicanteSpain

Personalised recommendations