Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: methodology and case studies

  • U. M. K. Eidsvig
  • A. McLean
  • B. V. Vangelsten
  • B. Kalsnes
  • R. L. Ciurean
  • S. Argyroudis
  • M. G. Winter
  • O. C. Mavrouli
  • S. Fotopoulou
  • K. Pitilakis
  • A. Baills
  • J.-P. Malet
  • G. Kaiser
Original Paper

Abstract

The severity of the impact of a natural hazard on a society depends on, among other factors, the intensity of the hazard and the exposure and resistance ability of the elements at risk (e.g., persons, buildings and infrastructures). Social conditions strongly influence the vulnerability factors for both direct and indirect impact and therefore control the possibility to transform the occurrence of a natural hazard into a natural disaster. This article presents a model to assess the relative socioeconomic vulnerability to landslides at the local to regional scale. The model applies an indicator-based approach. The indicators represent the underlying factors that influence a community’s ability to prepare for, deal with, and recover from the damage and loss associated with landslides. The proposed model includes indicators that characterize the demographic, social and economic setting as well as indicators representing the degree of preparedness, effectiveness of the response and capacity to recover. Although this model focuses primarily on the indirect losses, it could easily be extended to include physical indicators accounting for the direct losses. Each indicator is individually ranked from 1 (lowest vulnerability) to 5 (highest vulnerability) and weighted, based on its overall degree of influence. The final vulnerability estimate is formulated as a weighted average of the individual indicator scores. The proposed model is applied for six case studies in Europe. The case studies demonstrate that the method gives a reasonable ranking of the vulnerability. The practical experience achieved through the case studies shows that the model is straightforward for users with knowledge on landslide locations and with access to local census data.

Keywords

Socioeconomic vulnerability Indicator-based vulnerability models Landslide Case study 

References

  1. Birkmann J (2006) Indicators and criteria for measuring vulnerability: theoretical bases and requirements. In: Birkmann J (ed) Measuring vulnerability to natural hazards: towards disaster resilient societies, United Nations University Press, Tokyo, JapanGoogle Scholar
  2. Cardona OD (2003) Indicators for risk management: methodological fundamentals, information and indicators program for disaster risk management, IADB/ECLAC/IDEAGoogle Scholar
  3. Carreňo ML, Cardona OD, Barbat A (2007a) A disaster risk management performance index. Nat Hazards 41:1–20CrossRefGoogle Scholar
  4. Carreňo ML, Cardona OD, Barbat A (2007b) Urban seismic risk evaluation: a holistic approach. Nat Hazards 40:137–172CrossRefGoogle Scholar
  5. CIMNE (2009) Methods and indicator systems for assessing vulnerability and risk: detailed literature review. Deliverable to WT 1.2, MOVE (methods for the improvement of vulnerability assessment in Europe)Google Scholar
  6. Committee on Assessing the Costs of Natural Disasters (1999) The impacts of natural disasters: a framework for loss estimation, committee on assessing the costs of natural disasters, National Research Council, Washington, United States of America. http://www.nap.edu/catalog/6425.html
  7. Corominas J, Copons R, Moya J, Vilaplana J, Maltimir J, Amigó J (2005) Quantitative assessment of the residual risk in a rock fall protected area. Landslides 2:343–357CrossRefGoogle Scholar
  8. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, van den Eeckhaut M, Mavrouli O-C, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi SS, Tofani V, Hervás J, Smith J (2013) Recommendations for the quantitative assessment of landslide risk. Bull Eng Geol Environ. doi:10.1007/s10064-013-0538-8
  9. Cutter SL, Boruff BJ, Shirley LW (2003) Social vulnerability to environmental hazards. Soc Sci Q 84(2):242–261CrossRefGoogle Scholar
  10. Dwyer A, Zoppou C, Nielsen O, Day S, Roberts S (2004) Quantifying social vulnerability: a methodology for identifying those at risk to natural hazards, Australian Government, Geoscience AustraliaGoogle Scholar
  11. Heinimann HR (1999) Risikoanalyse bei gravitativen Naturgefahren—Fallbeispiele und Daten, Umwelt-Materialen 107/I, Bern, 1999Google Scholar
  12. Kappos AJ, Panagopoulos G, Sextos AG, Papanikolaou VK, Stylianidis KC (2010) Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city—structural aspects. Earthq Struct 1(2):197–214CrossRefGoogle Scholar
  13. King D, MacGregor C (2000) Using social indicators to measure community vulnerability to natural hazards. Aust J Emerg Manag 15(3):52–57Google Scholar
  14. Lahidji R (2008) Measuring the capacity to cope with natural disasters. Contribution to the UN OCHA project “risk assessment and mitigation measures for natural and conflict-related hazards in Asia Pacific” Appendix G in http://www.preventionweb.net/files/10455_OCHANGINaturalconflictrelatedhazard.pdf
  15. Li Z, Nadim F, Huang H, Uzielli M, Lacasse S (2010) Quantitative vulnerability estimation for scenario-based landslide hazards. Landslides 7(2):125–134CrossRefGoogle Scholar
  16. Malet J-P, Laigle D, Remaître A, Maquaire O (2005) Triggering conditions and mobility of debris-flows associated to complex earthflows. Geomorphology 66(1–4):215–235CrossRefGoogle Scholar
  17. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3(2):159–174CrossRefGoogle Scholar
  18. Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Dominey-Howes D (2007) Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat Hazards Earth Syst Sci 7:765–779CrossRefGoogle Scholar
  19. Papathoma-Köhle M, Kappes MS, Keiler M, Glade T (2011) Physical vulnerability assessment for alpine hazards: state of the art and future needs future needs. Nat Hazards 58(2):645–680CrossRefGoogle Scholar
  20. Peduzzi P, Dao H, Herold C, Mouton F (2009) Assessing global exposure and vulnerability towards natural hazards: the Disaster Risk Index. Nat Hazards Earth Syst Sci 9:1149–1159. www.nat-hazards-earth-syst-sci.net/9/1149/2009/
  21. Pitilakis K, Anastasiadis A, Kakderi K, Manakou M, Manou D, Alexoudi M, Fotopoulou S, Argyroudis S, Senetakis K (2011) Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city: seismic hazard, geotechnical and lifeline aspects. Earthq Struct 2(3):207–232CrossRefGoogle Scholar
  22. Puissant A, Van Den Eeckhaut M, Malet JP, Maquaire O (2013) Landslide consequence analysis: a region-scale indicator-based methodology. Landslides J Int Consort on Landslides (in press). doi:10.1007/s10346-013-0429-x
  23. Steinführer A, De Marchi B, Kuhlicke C, Scolobig A, Tapsell S, Tunstall S (2009) Vulnerability, resilience and social constructions of flood risk in exposed communities. FLOODsite report T11-07-12. http://www.floodsite.net
  24. Tapsell S, Tunstall S, Green C, Fernandez A (2005) Social indicator set. FLOODsite report T11-07-01. http://www.floodsite.net/html/publications2asp?ALLdocs=on&Submit=View, Enfield: Flood Hazard Research Centre
  25. Taubenböck H, Post J, Roth A, Zosseder K, Strunz G, Dech S (2008) A conceptual vulnerability and risk framework as outline to identify capabilities of remote sensing. Nat Hazards Earth Syst Sci 8:409–420CrossRefGoogle Scholar
  26. Uzielli M, Nadim F, Lacasse S, Kaynia AM (2008) A conceptual framework for quantitative estimation of physical vulnerability to landslides. Eng Geol 102:251–256CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • U. M. K. Eidsvig
    • 1
    • 2
  • A. McLean
    • 2
    • 3
  • B. V. Vangelsten
    • 1
    • 2
  • B. Kalsnes
    • 1
    • 2
  • R. L. Ciurean
    • 2
    • 9
  • S. Argyroudis
    • 4
  • M. G. Winter
    • 5
  • O. C. Mavrouli
    • 6
  • S. Fotopoulou
    • 4
  • K. Pitilakis
    • 4
  • A. Baills
    • 7
  • J.-P. Malet
    • 8
  • G. Kaiser
    • 1
  1. 1.NGIOsloNorway
  2. 2.ICGOsloNorway
  3. 3.Stanford UniversityStanfordUSA
  4. 4.AUTHThessalonikiGreece
  5. 5.TRLEdinburghUK
  6. 6.UPCBarcelonaSpain
  7. 7.BRGMOrléansFrance
  8. 8.Institut de Physique du Globe de Strasbourg, CNRS UMR 7516University of StrasbourgStrasbourgFrance
  9. 9.University of ViennaViennaAustria

Personalised recommendations