Advertisement

Micro–macro-experimental study of two clayey materials on drying paths

  • Xin WeiEmail author
  • Mahdia Hattab
  • Jean-Marie Fleureau
  • Ruilin Hu
Original Paper

Abstract

The objective of this research is to provide a better understanding of the relation between the macroscopic and microscopic behaviours of two clayey materials, a kaolinite and a mixture of kaolinite and montmorillonite. At the macroscopic scale, the approach consists of measuring the water content, void ratio and degree of saturation versus suction (s) during drying, which allows to specify the relationship between shrinkage and desaturation and highlights the characteristic phases of behaviour. At the microscopic scale, study of the orientation of the clay particles is carried out by scanning electron microscope (SEM) picture analysis under different suctions. On drying paths, the observations show an isotropy of the microfabric. The evolution of the porosity derived from mercury intrusion porosimetry tests is confirmed by SEM photograph observations.

Keywords

Clays Isotropy Scanning electron microscope Mercury intrusion porosimetry Shrinkage Suction Soil structure 

Résumé

L’objet de cette recherche est d’offrir une meilleure compréhension du lien entre le comportement à l’échelle macroscopique et microscopique de deux matériaux argileux, une kaolinite et un mélange de kaolinite et de montmorillonite. A l’échelle macroscopique, l’approche consiste à mesurer la teneur en eau, l’indice des vides et le degré de saturation en fonction de la succion sur chemin de drainage. Ceci permet de préciser les relations entre le retrait et la désaturation et de mettre en évidence les phases caractéristiques du comportement. A l’échelle microscopique, l’étude de l’orientation des particules d’argile est réalisée par analyse d’images prises au microscope électronique à balayage (MEB). Sur chemin de séchage, les observations montrent une isotropie microstructurale du sol. L’évolution de la porosité est examinée à partir de mesures par porosimétrie au mercure, confirmées par des images seuillées de photos MEB.

Mots clés

Argile Isotropie Microscopie à balayage Porosimétrie au mercure Retrait Succion Structure du sol 

Notes

Acknowledgments

This work was supported by the China Scholarship Council (CSC) and the GNR FORPRO project <Fissuration des argiles liée à la desiccation—Couplage des approches macroscopiques et microstructurales>.

References

  1. Al-Rawas AA, McGown A (1999) Microstructure of Omani expansive soils. Can Geotech J 36:272–290CrossRefGoogle Scholar
  2. Aylmore L, Quirk JP (1960) Domain or turbostratic structure of clays. Nature 137:1046–1048CrossRefGoogle Scholar
  3. Bai X, Smart P (1997) Change in microstructure of kaolin in consolidation and undrained shear. Géotechnique 47(5):1009–1017CrossRefGoogle Scholar
  4. Barton CM (1974) The micromorphological soil-investigation work of Dr. Lafeber. In: Rutherford GK (ed) Soil microscopy. The Limestone Press, Kingston, Ontario, pp 1–19Google Scholar
  5. Cetin H (2004) Soil-particle and pore orientations during consolidation of cohesive soils. Eng Geol 73:1–11. doi: 10.1016/j.enggeo.2003.11.006 CrossRefGoogle Scholar
  6. Cetin H, Söylemez M (2004) Soil-particle and pore orientations during drained and undrained shear of a cohesive sandy silt–clay soil. Can Geotech J 41:1127–1138. doi: 10.1139/T04-055 CrossRefGoogle Scholar
  7. Cetin H, Fener M, Söylemez M, Günaydin O (2007) Soil structure changes during compaction of a cohesive soil. Eng Geol 92:38–48. doi: 10.1016/j.enggeo.2007.03.005 CrossRefGoogle Scholar
  8. Collins K, McGown A (1974) The form and function of microfabric features in a variety of natural soils. Géotechnique 24(2):223–254CrossRefGoogle Scholar
  9. Crampton CB (1974) Micro shear-fabrics in soils of the Canadian north. In: Rutherford GK (ed) Soil microscopy. The Limestone Press, Kingston, Ontario, pp 655–664Google Scholar
  10. Dangla P (2001) Plasticity and hysteresis [Plasticité et Hystérésis]. In: Coussy O, Fleureau JM (eds) Mechanics of unsaturated soils. Hermès, Paris, pp 231–273Google Scholar
  11. Delage P, Lefebvre G (1984) Study of the structure of an sensitive Champlain clay and of its evolution during consolidation. Can Geotech J 21(1):21–35CrossRefGoogle Scholar
  12. Delage P, Pellerin M (1984) Influence of lyophilization on the structure of a sensitive clay from Quebec [Influence de la lyophilisation sur la structure d’une argile sensible du Québec]. Clay Min 19(2):151–160CrossRefGoogle Scholar
  13. Delage P, Audiguier M, Cui YJ, Howatt MD (1996) Microstructure of a compacted silt. Can Geotech J 33:150–158CrossRefGoogle Scholar
  14. Diamond S (1971) Microstructure and pore structure of impact-compacted clays. Clays Clay Min 19:239–249CrossRefGoogle Scholar
  15. Dudoignon P, Pantet A, Carrara L, Velde B (2001) Macro–micro measurement of particle arrangement in sheared kaolinitic matrices. Géotechnique 51(6):493–499. doi: 10.1680/geot.2001.51.6.493 CrossRefGoogle Scholar
  16. Dumont M, Taibi S, Fleureau JM, Abou-Bekr N, Saouab A (2011) A thermo-hydro-mechanical model for unsaturated soils based on the effective stress concept. Int J Num Anal Meth Geomech 35(12):1299–1317. doi: 10.1002/nag.952 CrossRefGoogle Scholar
  17. Fleureau JM, Kheirbek-Saoud S, Taibi S, Soemitro R (1993) Behaviour of clayey soils on drying-wetting paths. Can Geotech J 30(2):287–296CrossRefGoogle Scholar
  18. Fleureau JM, Verbrugge JC, Huergo PJ, Gomes-Correia A, Kheirbek-Saoud S (2002) Description and modelling of the drying and wetting paths of compacted soils. Can Geotech J 39:1341–1357CrossRefGoogle Scholar
  19. Geremew Z, Audiguier M, Cojean R (2009) Analysis of the behaviour of a natural expansive soil under cyclic drying and wetting [Analyse du comportement d’un sol argileux sous sollicitations hydriques cycliques]. Bull Eng Geol Environ 68(3):421–436CrossRefGoogle Scholar
  20. Guillot X (2001) Coupling between microscopic properties and mechanical behaviour of a clayey material [Couplage entre propriétés microscopiques et comportement mécanique d’un matériau argileux]. Doctoral dissertation (in french), Ecole Centrale Paris, France, p 66Google Scholar
  21. Hammad T (2010) Behaviour of deepwater marine sediments: a multiscale approach [Comportement des sédiments marins de grande profondeur: approche multiéchelle], Doctoral dissertation (in french), Ecole Centrale Paris, France, p 8–12Google Scholar
  22. Hattab M (2011) Critical state notion and microstructural considerations in clays. CR Mécanique 339:719–726. doi: 10.1016/j.crme.2011.07.007 CrossRefGoogle Scholar
  23. Hattab M, Fleureau JM (2010) Experimental study of kaolin particle orientation mechanism. Géotechnique 60(5):323–331CrossRefGoogle Scholar
  24. Hattab M, Fleureau JM (2011) Experimental analysis of kaolinite particle orientation during triaxial path. Int J Num Anal Meth Geomech 35(5):947–968CrossRefGoogle Scholar
  25. Hattab M, Bouziri-Adrouche S, Fleureau JM (2010) Evolution of the microtexture of a matrix of kaolinite with an axisymmetric triaxial path [Evolution de la microtexture d’une matrice kaolinitique sur chemin triaxial axisymétrique]. Can Geotech J 47:38–48CrossRefGoogle Scholar
  26. Hicher PY, Wahyudi H, Tessier D (2000) Microstructural analysis of inherent and induced anisotropy in clay. Mech Cohesive-Frict Mater 5(5):341–371CrossRefGoogle Scholar
  27. Higo Y, Oka F, Kimoto S, Sanagawa T, Matsuhima Y (2011) Observation of microstructural changes and strain localization of unsaturated sands using Microfocus X-ray CT. Adv Bifurcation Degrad Geomater 11:37–43CrossRefGoogle Scholar
  28. Hu LB, Péron H, Hueckel T, Laloui L (2012) Desiccation shrinkage of non-clayey soils: multi-physics mechanisms and a microstructural model. Int J Num Anal Meth Geomech. doi: 10.1002/nag.2108 Google Scholar
  29. Ingles OG, Lafeber D (1966) The influence of volume defects on the strength and strength isotrophy of stabilized clays. Eng Geol 1(4):305–310CrossRefGoogle Scholar
  30. Khalili N, Geiser F, Blight G (2004) Effective stress in unsaturated soils: review with new evidence. Int J Geomech 4(2):115–126. doi: 10.1061/(ASCE)1532-3641(2004)4:2(115) CrossRefGoogle Scholar
  31. Kohgo Y, Nakano M, Miyazaki T (1993) Theoretical aspects of constitutive modeling for unsaturated soils. Soils Found 33(4):49–63CrossRefGoogle Scholar
  32. Laribi S, Jouffrey B, Fleureau JM (2005) On observation of freeze-dried smectite plane views of nano-layers. Appl Phys Lett 86:231915CrossRefGoogle Scholar
  33. Martin RT, Ladd CC (1975) Fabric of consolidated kaolinite. Clays Clay Min 23(1):17–25CrossRefGoogle Scholar
  34. Mitchell JK (1956) The fabric of natural clays and its relation to engineering properties. Proc Highw Res Board 35:693–713Google Scholar
  35. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New JerseyGoogle Scholar
  36. Morgenstern NR, Tchalenko JS (1967) Microscopic structures in Kaolin subjected in direct shear. Géotechnique 17(4):309–328. doi: 10.1680/geot.1967.17.4.309 CrossRefGoogle Scholar
  37. Murphy CP, Bullock P, Biswell KJ (1977) The measurement and characterization of voids in soil thin sections by image analysis. Part II applications. J Soil Sci 28:509–518CrossRefGoogle Scholar
  38. Péron H (2008) Desiccation cracking of soils. Doctoral dissertation, Ecole Polytechnique Fédérale de Lausanne, SwitzerlandGoogle Scholar
  39. Péron H, Laloui L, Hueckel T, Hu L (2006) Experimental study of desiccation of soil. In: Miller et al. (eds) UNSAT 2006: ASCE Geot Spec Pub 147(1):1073–1084Google Scholar
  40. Pusch R (1966) Quick-clay microstructure. Eng Geo 1(6):433–443Google Scholar
  41. Pusch R (1970) Microstructural changes in soft quick clay at failure. Can Geotech J 7(1):1–7CrossRefGoogle Scholar
  42. Seed HB, Chan CK (1959) Structure and strength characteristics of compacted clays. J Soil Mech Found Div Proc ASCE 85(5):87–128Google Scholar
  43. Sloane RL, Kell TR (1966) The fabric of mechanically compacted kaolin. Clays and Clay Min. Proceedings of the 14th Nature Clay Conference: 289–296Google Scholar
  44. Sloane RL, Nowatzki EA (1967) Electron-optical study of fabric changes accompanying shear in a kaolin clay. Proceedings of the 3rd Pan-American conference on soil mechanics and foundation engineering, Caracas, 1:215–225Google Scholar
  45. Souli H (2006) Hydro-mechanical and physico-chemical studies of two clays in the presence of metal cations [Etudes hydromécanique et physico-chimique de deux argiles en présence de cations métalliques], Doctoral dissertation (in french), Ecole Centrale Paris, FranceGoogle Scholar
  46. Souli H, Fleureau JM, Kbir-Ariguib N, Trabelsi-Ayadi M (2010) Changes in the fabric of a Tunisian clayey soil during wetting. Clay Min 45:315–326CrossRefGoogle Scholar
  47. Tchalenko JS (1968) The evolution of kink-bands and the development of compression textures in sheared clays. Tectonophysics 6:159–174CrossRefGoogle Scholar
  48. Tessier D (1984) Experimental study of the organization of clayey materials [Etude expérimentale de l’organisation des matériaux argileux]. Doctoral dissertation (in french), Paris university, FranceGoogle Scholar
  49. Van-Damme H (2001) Water and its representation [L’eau et sa représentation]. In: Coussy O, Fleureau JM (eds) Mechanics of unsaturated soils (in french). Hermès, Paris, pp 23–68Google Scholar
  50. Yoshinaka R, Kazama H (1973) Microstructure of compacted kaolin clay. Soils Found 13:19–34CrossRefGoogle Scholar
  51. Zerhouni MI (1991) Role of negative pore pressure in the soil behaviour [Rôle de la pression interstitielle négative dans le comportement des sols]. Doctoral dissertation (in french), Ecole Centrale Paris, FranceGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xin Wei
    • 1
    Email author
  • Mahdia Hattab
    • 2
  • Jean-Marie Fleureau
    • 1
  • Ruilin Hu
    • 3
  1. 1.Laboratoire de Mécanique des Sols Structures et MatériauxEcole Centrale Paris-CNRS UMR 8579ParisFrance
  2. 2.Laboratoire d’Etude des Microstructures et de Mécanique des MatériauxUniversité de Lorraine-CNRS UMR 7239MetzFrance
  3. 3.Engineering Geomechanics Laboratory, Institute of Geology and GeophysicsChinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations