Landslide assessment for land use planning and infrastructure management in the Paphos District of Cyprus

  • A. B. Hart
  • G. J. Hearn
Original Paper


The Paphos District has been described as one of the most landslide-prone areas of Cyprus, with landslides impacting villages, roads and other infrastructure. With increasing levels of development and investment in infrastructure, Cypriot authorities are investigating ways to assess landslide susceptibility, hazard and risk for planning purposes. A 2-year project has catalogued over 1,840 landslides, investigated the spatial distribution of key landslide attributes, and used the results to develop maps of landslide susceptibility across large areas of the Paphos District. To gain a better understanding of the materials and failure mechanisms involved, 20 of these landslides were selected for further study, including engineering geological mapping, ground investigation, laboratory testing, development of ground models and slope stability analysis at specific locations. The results enabled soil parameters to be reviewed, thus strengthening the interpretations derived from field observations. The use of the mapping outputs is discussed in terms of planning and engineering applications and recommendations are made for strengthening and expanding the landslide database.


Cyprus Paphos Landslide susceptibility Landslide inventory Landuse planning 


Le District de Paphos a été décrit comme l’une des régions de Chypre les plus sujettes aux glissements de terrain, avec des glissements menaçant des villages, des routes et d’autres infrastructures. Avec un développement croissant et les dépenses correspondantes dans les infrastructures, les autorités chypriotes étudient les moyens d’évaluer la sensibilité aux glissements de terrain et les risques dans un contexte d’aménagement du territoire. Un projet de deux ans a permis de répertorier plus de 1,840 glissements de terrain, d’étudier les caractéristiques majeures de ces glissements et d’établir des cartes de susceptibilité aux glissements de terrain sur de vastes zones du District de Paphos. Afin d’avoir une meilleure compréhension des matériaux et des mécanismes de rupture associés, une vingtaine de ces glissements de terrain ont été sélectionnés pour une étude plus approfondie, avec une cartographie géologique, des études de terrain, des essais de laboratoire, des modélisations et des études de stabilité en des zones précises. Les résultats ont permis de revoir les paramètres géotechniques pris en compte et de consolider les interprétations issues des observations de terrain. Les résultats cartographiques issus de ce projet sont discutés en termes d’aménagement du territoire et des recommandations sont faites pour renforcer et élargir la base de données des glissements de terrain.

Mots clés

Chypre Paphos Susceptibilité aux glissements de terrain Inventaire des glissements de terrain Aménagement du territoire 



The authors would like to thank the Geological Survey Department of Cyprus (and in particular Maria Efthymiou and Kleopas Hadjicharalambous), the other members of the URS project team (Mark Ruse, Paul Quinlan, James Mitchell and Antonios Charalambides) and Peter Hobbs (British Geological Survey) for all of their help and assistance with the project, as well as their contributions and feedback on previous versions of this manuscript. The authors would also like to thank the GSD and URS for permission to publish this paper.


  1. AGS (2007) A national landslide risk management framework for Australia. J News Aust Geomech Soc 42(1):182Google Scholar
  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58(1):21–44CrossRefGoogle Scholar
  3. Butzer KW (1958) Quaternary stratigraphy and climate in the near East. Bonner Geographische Abhandlungen 24:1–157Google Scholar
  4. Charalambous M, Hobbs PRN, Northmore KJ (1986) Supplementary geotechnical and mineralogical data for cohesive soil samples from selected sites across Cyprus: Engineering geology of cohesive soils associated with ophiolites, with particular reference to Cyprus. Report EGARP Research Group, British Geological Survey, No EGARP-KW/86/5, Report Geological Survey of Cyprus, No. G/EG/16Google Scholar
  5. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Special Report 247 of the Transport Research Board, National Research Council. National Academy Press, Washington, DC, 36–75Google Scholar
  6. Dahal RK, Hasegawa S, Nonomura A, Yamanaka M, Dhakal S, Paudyal P (2008) Predictive modelling of rainfall-induced landslide hazard in the Lesser Himalaya of Nepal based on weights-of-evidence. Geomorphology 102:496–510CrossRefGoogle Scholar
  7. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. JTC-1 Joint Technical Committee on Landslides and Engineered Slopes. Eng Geol 102:85–111. doi: 10.1016/j.enggeo.2008.03.014 CrossRefGoogle Scholar
  8. Geological Survey Department of Cyprus, 1995. Geological Map of CyprusGoogle Scholar
  9. Hadjigeorgiou J, Kyriakou E, Papanastasiou P (2006) A road embankment failure near Pentalia in southwest Cyprus, The South African Institute of Mining and Metallurgy, International Symposium on Stability of Rock Slopes in Open Pit Mining and Civil Engineering, 343–352Google Scholar
  10. Hadjistavrinou Y, Afrodisis S (1969) Geology and Hydrogeology of the Paphos region, vol 7. Bulletin of the Geological Survey Department, Cyprus, pp 1–44Google Scholar
  11. Hammond R, McCullagh PS (1978) Quantitative techniques in geography: an Introduction. Clarendon Press, Oxford, UKGoogle Scholar
  12. Hart AB, Ruse ME, Hobbs PRN, Efthymiou M, Hadjicharalambous K (2010) Development of a landslide inventory to assess landslide hazard in Paphos District, Cyprus. In: Williams AL, Pinches GM, Chin CY, McMorran TJ, Massey CI (eds) Geologically Active. Proceedings of the eleventh IAEGE congress, Auckland, New Zealand, September. Taylor and Francis Group, London, pp 229–239Google Scholar
  13. Hearn, GJ (2011) B2 Desk Studies. In: Hearn, GJ (ed) Slope engineering for mountain roads. Geological Society, Engineering Geology Special Publications, London, 24, 71–101. doi:  10.1144/EGSP24.6
  14. Hearn GJ, Hart AB (2011) Geomorphological contributions to landslide risk assessment: theory and practice. In: Griffiths JS, Smith M, Paron P (eds) Geomorphological mapping: methods and applications. Developments in Earth Surface Processes (Series Editor Shroder Jr JF), Vol 15, Elsevier, London, p 107–148Google Scholar
  15. Jimenez-Peralvarez JD, Irigaray C, Hamdouni REl, Chacon J (2011) Landslide susceptibility mapping in a semi-arid mountain environment: an example from the southern slopes of the Sierra Nevada (Granada, Spain). Bull Eng Geol Environ 70(22):265–278. doi: 10.1007/s10064-010-0332-9 CrossRefGoogle Scholar
  16. Ministry of Agriculture Natural Resources and Environment (1999) Soils Map of Cyprus Google Scholar
  17. Northmore KJ, Charalambous M, Hobbs PRN, Petrides G (1986) Engineering geology of the Kannaviou, ‘Melange’ and Mamonia Complex formations—Phiti/Statos area, SW Cyprus: Engineering geology of cohesive soils associated with ophiolites, with particular reference to Cyprus. Report EGARP Research Group British Geological Survey, No. EGARP-KW/86/4; Report of the Geological Survey Department of Cyprus, No. G/EG/15Google Scholar
  18. Northmore KJ, Hobbs PRN, Charalambous M, Petrides G (1988) Complex landslides in the Kannaviou Melange and Mamonia formation of South-West Cyprus”. In: Bonnard C (Ed) Landslides: Glissements de Terrain, Proceedings of the 5th International Symposium on Landslides, A.A. Balkema Publishers, Brookfield, WI, 1: 263–268Google Scholar
  19. Pantazis ThM (1969) Landslides in Cyprus, vol 4. Bulletin of the Geological Survey Department, Cyprus, pp 1–20Google Scholar
  20. Payne AS, Robertson AHF (1995) Neogene supra-subduction zone extension in the Polis graben system, west Cyprus. J Geol Soc, Lond 152:613–628. doi: 10.1144/gsjgs.152.4.0613 CrossRefGoogle Scholar
  21. Swarbrick RE, Robertson AHF (1980) Revised stratigraphy of the Mesozoic rocks of Southern Cyprus. Geol Mag 117(6):547–563. doi: 10.1017/S0016756800028892 CrossRefGoogle Scholar
  22. Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142CrossRefGoogle Scholar
  23. van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419CrossRefGoogle Scholar
  24. WP/WLI (1993) (International Geotechnical Societies, UNESCO Working Party on World Landslide Inventory), A suggested method for describing the activity of a landslide. Bull Int Assoc Eng Geol 47:53–57. doi: 10.1007/BF02639593 CrossRefGoogle Scholar
  25. Wu C-H, Chen S-C (2009) Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy approach. Geomorphology 112:190–204 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.URS Infrastructure & Environment UK Limited (formerly Scott Wilson Ltd)BasingstokeUK
  2. 2.Atkins (Ground Engineering)SurreyUK
  3. 3.Hearn Geoserve LtdWest SussexUK

Personalised recommendations