Advertisement

Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving

  • Michel Heuser
  • Giovanni SpagnoliEmail author
  • Philippe Leroy
  • Norbert Klitzsch
  • Helge Stanjek
Original Paper

Abstract

Clogging during mechanical tunnel driving is not only a serious technical issue, but also an economic one. The costs of a tunnel excavation can easily rise and disputes between the awarding authorities and the executive companies may occur. Although the literature is full of cases describing the clogging in clayey soils and despite countermeasures being available, clogging still occurs. This study proposes an alternative method to diminish adhesion of clays on TBMs. Electro-osmotic flow experiments, spectral induced polarisation tests and Zeta-potential simulations were performed on kaolinite and smectite, mixed with several pore fluids under one critical consistency index. The results showed that the electrical parameters were not only influenced by the clay mineralogy per se, but also by the pore fluid chemistry. To apply the laboratory findings in in situ conditions, several theoretical considerations have been taken into account. Although further research is required, the study indicates electro-osmosis may be a new and revolutionary approach to deal with the clogging of TBMs.

Keywords

Adherence Mechanized tunneling Electro-osmosis SIP Zeta potential 

Résumé

Le colmatage lors du creusement d’un tunnel est non seulement un grave problème technique, mais aussi une question économique. Ce travail de recherche propose une méthode alternative pour diminuer l’adhérence des sols argileux sur les tunneliers. Des expériences d’écoulement électro-osmotique, des essais de polarisation induite spectrale (SIP) et des simulations de potentiel zêta ont été effectués avec de la kaolinite et de la smectite, mélangées avec plusieurs fluides pour un indice de consistance critique. Les résultats ont montré que les paramètres électriques étaient non seulement influencés par la minéralogie de l’argile, mais aussi par la chimie du fluide interstitiel. Pour appliquer ces résultats de laboratoire aux conditions in situ, plusieurs considérations théoriques ont été prises en compte. Bien que des études supplémentaires soient nécessaires, on conclut que l’électro-osmose pourrait constituer une approche nouvelle et révolutionnaire pour traiter du problème du colmatage des tunneliers.

Mots clés

Adhérence Creusement mécanisé des tunnels Electro-osmose SIP Potentiel Zêta 

Notes

Acknowledgments

This paper is publication no. GEOTECH-1985 of the German BMBF/DFG “Geotechnologien” program, whose financial support made this research possible. The authors also thank the following companies which have provided the materials for this research: Dorfner GmbH and HA Minerals GmbH. The authors wish also to thank Rafig Azzam, Martin Feinendegen and Tomás Fernández-Steeger for the cooperation throughout the project.

References

  1. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647CrossRefGoogle Scholar
  2. Bette U, Büchler M (2010) Taschenbuch für den kathodischen Korrosionsschutz, 8th edn, Vulkan VerlagGoogle Scholar
  3. Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in Norwegian quick clay. Géotechnique 17:214–235CrossRefGoogle Scholar
  4. Casagrande L (1948) Electro-osmosis in soils. Géotechnique 1:159–177CrossRefGoogle Scholar
  5. Dieng MA (2005) Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät. Bautechnik 82:28–32CrossRefGoogle Scholar
  6. Draganov L (1986) Elektrochemische Bodenverfestigung von Lockergesteinen. PhD thesis, University of Mining and Geology, SofiaGoogle Scholar
  7. Feinendegen M, Ziegler M, Spagnoli G, Weh M, Neher HP, Fernandez-Steeger TM, Stanjek H (2010) Grenzflächenprozesse zwischen Mineral—und Werkzeugoberflächen—Verklebungsproblematik beim maschinellen Tunnelvortrieb mit Erddruckschilden. Geotechnik 33(2):180–184Google Scholar
  8. Lageman R (1993) Electroreclamation. Environ Sci Technol 27(13):2648–2650CrossRefGoogle Scholar
  9. Leroy P, Revil A (2004) A triple layer model of the surface electrochemical properties of clay minerals. J Colloid Interface Sci 270(2):248–255CrossRefGoogle Scholar
  10. Leroy P, Revil A, Altmann S, Tournassat C (2007) Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochimica Cosmochimica Acta 71(5):1087–1097. doi: 10.1016/j.gca.2006.11.009 CrossRefGoogle Scholar
  11. Maidl BR, Herrenknecht M, Anheuser L (1996) Mechanised shield tunneling, 1st edn. Ernst and Sohn, BerlinGoogle Scholar
  12. Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays Clay Miner 47:386–388CrossRefGoogle Scholar
  13. Micic S, Shang JQ, Lo KY (2001) Electrokinetic strengthening of marine clay adjacent to offshore foundations. In: Proceedings of the 11th international offshore and polar engineering conference. Stvanger, Norway, 17–22 June, pp 694–701Google Scholar
  14. Milligan G (2000) Lubrification and soil conditioning in tunnelling, pipe jacking and microtunnelling. State of Art Review, New York, pp 1–46Google Scholar
  15. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New YorkGoogle Scholar
  16. Mohamedelhassan E, Shang JQ (2001) Effects of electrode materials and current intermittence in electro-osmosis. Ground Improv 5:3–11CrossRefGoogle Scholar
  17. Mohamedelhassan E, Shang JQ (2002) Feasibility assessment of electro-osmotic consolidation on marine sediment. Ground Improv 6(4):145–152CrossRefGoogle Scholar
  18. Reuss F (1808) Sur un nouvel effet de l’ électricité galvanique. Memoires de la Societe Imperiale des Naturalistes de Moscou 2:326–337Google Scholar
  19. Revil A, Leroy P (2004) Constitutive equations for ionic transport in porous shales. J Geophys Res Solid Earth 109:B3. doi: 10.1029/2003jb002755 CrossRefGoogle Scholar
  20. Roy S, Cooper GA (1993) Prevention of bit-balling in shales—some preliminary results. IADC Paper 23870, proc SPE/IADC drilling conference, New Orleans LA, 18–21 February 1992, pp 259–268Google Scholar
  21. Segall B, Bruell C (1992) Electroosmotic contaminant removal processes. J Environ Eng 118(1):84–100CrossRefGoogle Scholar
  22. Shinkin GN, Reuter F, Waldmann J (1974) Elektrochemische Bodenvergütung. VEB Deutscher Verlag für Grundstoffindustrie LeipzigGoogle Scholar
  23. Spagnoli G (2011) Electro-chemo-mechanical manipulations of clays regarding the clogging during EPB-tunnel driving. Mainz Verlag, AachenGoogle Scholar
  24. Spagnoli G, Klitzsch N, Fernández-Stegeer T, Feinendegen M, Real Rey A, Stanjek H, Azzam R (2011) Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving. Environ Eng Geosc 17(4):417–426CrossRefGoogle Scholar
  25. Spagnoli G, Rubinos D, Stanjek H, Fernández-Stegeer T, Feinendegen M, Azzam R (2012a) Undrained shear strength of clays as modified by pH variations. Bull Eng Geol Environ 71(1):135–148CrossRefGoogle Scholar
  26. Spagnoli G, Stanjek H, Sridharan A (2012b) Influence of ethanol/water mixture on the undrained shear strength of pure clays. Bull Eng Geol Environ 71(2):389–398CrossRefGoogle Scholar
  27. Thevanayagam S, Rishindran T (1998) Injections of nutrients and TEAs in clayey soil using electrokinetics. J Geotech Geoenviron Eng 124(4):330–338CrossRefGoogle Scholar
  28. Thewes M (1999) Adhäsion von Tonböden beim Tunnelvortrieb mit Flüssigkeitsschilden. Shaker Verlag, AachenGoogle Scholar
  29. Tombacz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124CrossRefGoogle Scholar
  30. Van Baalen LR (1999) Reduction of clay adherence by electro-osmosis. Master thesis, Faculty of Civil Engineering and Geosciences, TU DelftGoogle Scholar
  31. Van Olphen H (1963) An introduction to clay colloid chemistry, Interscience Publishers, New YorkGoogle Scholar
  32. Wilson JT, Leach LE, Henson M, Jones JN (1986) In situ biorestoration as a groundwater remediation technique. Ground Water Monit Rev 6(1):56–64Google Scholar
  33. Yeung AT (1994) Electro-kinetic flow processes and their applications. Adv Porous Media 2:307–393Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Michel Heuser
    • 1
  • Giovanni Spagnoli
    • 2
    • 3
    Email author
  • Philippe Leroy
    • 4
  • Norbert Klitzsch
    • 5
  • Helge Stanjek
    • 1
  1. 1.Clay and Interface MineralogyRWTH Aachen UniversityAachenGermany
  2. 2.BAUER Maschinen GmbHSchrobenhausenGermany
  3. 3.Department of Engineering Geology and HydrogeologyRWTH Aachen UniversityAachenGermany
  4. 4.Water DivisionBRGMOrléansFrance
  5. 5.E.ON Research Center, Institute for Applied Geophysics and Geothermal EnergyRWTH Aachen UniversityAachenGermany

Personalised recommendations