Landslide susceptibility mapping of the Sea to Sky transportation corridor, British Columbia, Canada: comparison of two methods

  • A. Blais-Stevens
  • P. Behnia
  • M. Kremer
  • A. Page
  • R. Kung
  • G. Bonham-Carter
Original Paper


The Sea to Sky corridor stretches over a distance of 135 km into British Columbia’s Coast Mountains. The corridor has witnessed hundreds of historical and pre-historic landslides. In the last 154 years, 155 landslide events have been reported. The most common types of landslides are rockfalls and debris flows, which are small in volume, but can be quite damaging. These are more abundant in the southern part of the corridor where infrastructure is built close to steep slopes. Two different methods were adapted to create debris flow and rockfall/rock slide susceptibility maps. Both qualitative heuristic and fuzzy logic susceptibility maps showed a similar distribution of susceptibility zones, especially high susceptibility. Correlation of high susceptibility zones with occurrence of historical and mapped geological landslide events was very good. Success rate curves were calculated for extrapolated zones of initiation for debris flow and rockfall/rock slide deposits. Success rate curves were better for debris flow than rockfall/rockslide maps.


Landslide susceptibility Fuzzy logic method Qualitative heuristic method Rockfalls/slides Debris flows Sea to Sky corridor British Columbia 


Le corridor Sea to Sky s’étend sur une distance de 135 km dans les montagnes de la chaîne côtière de la Colombie-Britannique. Le couloir a vu des centaines de glissements de terrain historiques et préhistoriques. Dans les 154 dernières années, 155 glissements de terrain ont été signalés. Les types les plus communs de glissements de terrain sont les chutes de pierre et les coulées de débris, qui sont faibles en volume, mais peuvent être très dommageables. Ceux-ci sont plus abondants dans la partie sud du couloir où les infrastructures sont construites à proximité de pentes abruptes. Deux méthodes différentes ont été adaptées pour créer des cartes de zones susceptibles aux coulées de débris et aux chutes de pierres/glissements rocheux. Les deux méthodes, qualitative heuristique et logique floue démontrent une distribution similaire de zones de susceptibilité, en particulier les zones de haute susceptibilité. La corrélation avec les zones de haute susceptibilité et les glissements de terrain historiques et cartographiés est très bonne. Les courbes de taux de réussite ont été calculées pour les zones d’initiation extrapolées de coulées de débris et de chutes de pierre/glissements rocheux. Les courbes de taux de réussite sont plus élevées pour les cartes de zones susceptibles aux coulées de débris que celles aux chutes pierre/glissements rocheux.

Mots clés

Zone susceptible aux glissements de terrain méthode logique floue méthode qualitative heuristique chute de pierre/glissement rocheux coulées de débris corridor Sea to Sky Colombie-Britannique 



This project was initially funded by Natural Resources Canada Climate Change Action Fund (769A). It was also funded by the Geological Survey of Canada’s Public Safety Geoscience Program as an activity within the Targeted Hazard Assessment in Western Canada project. T. Millard and M. Geertsema from BC Ministry of Forests and Range provided digital topographic data (TRIM data). T. Barry, S. Denny, K.Shimamura and M.Goldring are thanked for their technical assistance and drafting of some figures. O. Hungr is also thanked for providing the photo of Charles Creek debris flow deposit. F. Baumann, O. Hungr, and J. Clague are acknowledged for introducing the first author to the Sea to Sky corridor’s natural hazards. We are grateful to R. Couture and two anonymous reviewers for providing useful comments and suggestions. ESS Contribution number 20110029.


  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44. doi: 10.1007/s100640050066 CrossRefGoogle Scholar
  2. An P, Moon WM, Rencz A (1991) Application of fuzzy set theory to integrated mineral exploration. Can J Explor Geophys 27:1–11Google Scholar
  3. Banner A, MacKenzie W, Haeussler S, Thomson S, Pojar J, Trowbridge R (1993) A field guide to site identification and interpretation for the Prince Rupert Forest Region: Land Management Handbook No 26. British Columbia Ministry of Forests, VictoriaGoogle Scholar
  4. Blais-Stevens A (2007) Historical landslide events along the Sea to Sky Corridor. Geological Survey of Canada Open File 5678Google Scholar
  5. Blais-Stevens A (2008a) Surficial geology and landslide inventory of the lower Sea to Sky Corridor, British Columbia. Geological Survey of Canada Open File 5322, 1:50,000 scaleGoogle Scholar
  6. Blais-Stevens A (2008b) Surficial geology and landslide inventory of the middle Sea to Sky Corridor, British Columbia. Geological Survey of Canada Open File 5323, 1:50,000 scaleGoogle Scholar
  7. Blais-Stevens A (2008c) Superficial geology and landslide inventory of the upper Sea to Sky Corridor, British Columbia. Geological Survey of Canada Open File 5324, 1:50,000 scaleGoogle Scholar
  8. Blais-Stevens A, Couture R (2009) Landslide susceptibility mapping along pipeline corridors in Canada. In: Malet J-P, Remaître A, Bogaard T (eds) Landslide processes: from geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 253–257Google Scholar
  9. Blais-Stevens A, Hungr O (2008) Landslide hazards and their mitigation along the Sea to Sky Corridor, British Columbia, GeoHazards IV. In: Locat J, Perret D, Turmel D, Demers D, Leroueil S (eds) Proceedings of the 4th Canadian conference on geohazards: from causes to management. Presse de l’Université Laval, Québec City, pp 495–502Google Scholar
  10. Blais-Stevens A, Kung R (2009) Landslide susceptibility mapping along the Sea to Sky Corridor—a qualitative approach. Geological Survey of Canada Open File 6169Google Scholar
  11. Blais-Stevens A, Septer D (2008) Historical accounts of landslides and flooding events along the Sea to Sky Corridor, British Columbia, from 1855–2007. Geological Survey of Canada Open File Report 5741Google Scholar
  12. Blais-Stevens A, Couture R, Page A, Koch J, Clague JJ, Lipovsky P (2010) Landslide susceptibility, hazard and risk assessments along pipeline corridors in Canada. In: Proceedings of the 63rd Canadian geotechnical conference and 6th Canadian permafrost conference, Calgary (AB), pp 878–885Google Scholar
  13. Blais-Stevens A, Hermanns R, Jermyn C (2011) A 36Cl age determination for Mystery Creek rock avalanche and its implications in the context of hazard assessment, British Columbia, Canada. Landslides 8:407–416. doi: 10.1007/s10346-011-0261-0 CrossRefGoogle Scholar
  14. Bonham-Carter GF (1994) Geographic information systems for geoscientists; modeling with GIS. Pergamon, OxfordGoogle Scholar
  15. Bunce CM, Cruden DM, Morgenstern NR (1997) Assessment of the hazard from rockfall on a highway. Can Geotech J 34:344–356Google Scholar
  16. Carranza EJM, Hale M (2001) Geologically constrained fuzzy mapping of gold mineralization potential, Baguio District, Philippines. Nat Resour Res 10:125–136. doi: 10.1023/A:1011500826411 CrossRefGoogle Scholar
  17. Chung C-JF, Fabbri AE (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472. doi: 10.1023/B:NHAZ.0000007172.62651.2b CrossRefGoogle Scholar
  18. Clague JJ (1989) Cordilleran ice sheet. In: Fulton RJ (ed) Quaternary Geology of Canada and Greenland, Geological Survey of Canada No. 1, pp 40–95Google Scholar
  19. Corominas J, Copons R, Vilapla JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. Nat Hazards 30:421–435. doi: 10.1023/B:NHAZ.0000007094.74878.d3 CrossRefGoogle Scholar
  20. Couture R, Riopel S (2008) Landslide inventory along a proposed gas pipeline corridor between Inuvik and Tulita, Mackenzie Valley, Northwest Territories. Geological Survey of Canada Open File 5740Google Scholar
  21. Couture R, Blais-Stevens A, Page A, Koch J, Clague JJ, Lipovsky PS (2010) Landslide susceptibility, hazard and risk assessment along pipelines in Canada. In: Williams et al (eds) Proceedings of the 11th international association for engineering geology and the environment congress. Auckland, New Zealand, pp 1023–1031Google Scholar
  22. Dai FC, Lee CF (2001) Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Can Geotech J 38:911–923. doi: 10.1139/cgi-38-5-911 CrossRefGoogle Scholar
  23. Eisbacher GH (1983) Slope stability and mountain torrents, Fraser lowlands and southern coast mountains, British Columbia. In: Geological Association of Canada annual meeting fieldtrip guidebook No 5Google Scholar
  24. Ercanoglu M, Gokceoglu C (2004) Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250. doi: 10.1016/j.enggeo.2004.06.001 CrossRefGoogle Scholar
  25. Ercanoglu M, Gokceoglu C, Van Asch TWJ (2004) Landslide susceptibility zoning of North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23. doi: 10.1023/B:NHAZ.0000026786.85589.4a CrossRefGoogle Scholar
  26. Frattini P, Criosta G, Carrara A (2010) Techniques for evaluating the performance of susceptibility models. Eng Geol 111:62–72. doi: 10.1016/j.enggeo.2009.12.004 CrossRefGoogle Scholar
  27. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology 31:181–216. doi: 10.1016/SO169-555X(99)00078-1 CrossRefGoogle Scholar
  28. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi: 10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  29. Hare FK, Hay JE (1974) The climate of Canada and Alaska. In: Bryson RA, Hay FK (eds) Climates of North America. Elsevier Scientific Publishing Company, Amsterdam, pp 49–192Google Scholar
  30. Jakob M, Lambert S (2009) Climate change effects on landslides along the southwest coast of British Columbia. Geomorphology 107:275–284. doi: 10.1016/j.geomorph.2008.12.009 CrossRefGoogle Scholar
  31. Jenks GF (1967) The data model concept in statistical mapping. Intern Yearb Carto 7:186–190Google Scholar
  32. Journeay JM, Monger JWH (1998) Interactive geoscience library, Digital Information for the coast and intermontane belts of southwestern British Columbia. Geological Survey of Canada Open File 3276 Google Scholar
  33. Kamp U, Growley BJ, Khattak GA (2008) GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 101:631–642. doi: 10.1016/j.geomorph.2008.03.003 CrossRefGoogle Scholar
  34. Kanungo DP, Arora MK, Sarkar S, Gupta RP (2009) A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk 3:30–43Google Scholar
  35. Leir M, Mitchell A, Ramsey S (2004) Regional landslide hazard susceptibility mapping for pipelines in British Columbia. In: Proceedings of 57th Canadian geotechnical conference, Québec CityGoogle Scholar
  36. Mathews WH (1958) Geology of the Mount Garibaldi map-area, southwestern British Columbia, Canada; Part 1, igneous and metamorphic rocks. Geol Soc Am Bull 69:161–178. doi: 10.1130/0016-7606(1958)69[161:GOTMGM]2.0.CO;2 CrossRefGoogle Scholar
  37. Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza Valley, Argentina. Geomorphology 66:345–357. doi: 10.1016/j.geomorph.2004.09.019 CrossRefGoogle Scholar
  38. O’Connell J, Finlayson J (2005) Landslide susceptibility along the Sea to Sky Highway. Advanced Issues in GIS, at the University of British Columbia, Vancouver.
  39. Quinn PE, Hutchinson DJ, Diederichs MS, Rowe RK (2010) Regional-scale landslide susceptibility mapping using the weights of evidence method: an example applied to linear infrastructure. Can Geotech J 47:905–927. doi: 10.1139/T09-144 CrossRefGoogle Scholar
  40. Ramsay B (1967) Britannia, the story of a mine, Britannia Beach Community ClubGoogle Scholar
  41. Riopel S, Couture R, Tewari K (2006) Mapping susceptibility to landslides in a permafrost environment: case study in the Mackenzie Valley, Northwest Territories. GeoTech Event 2006, OttawaGoogle Scholar
  42. Ruff M, Czurda K (2008) Landslide susceptibility analysis with a heuristic approach at the Eastern Alps (Vorarlberg, Austria). Geomorphol 94:314–324. doi: 10.1016/j.geomorph.2006.10.032 CrossRefGoogle Scholar
  43. Ryder JM (1989) Holocene glacier fluctuations (Canadian Cordillera). In: Fulton RJ (ed) Quaternary geology of Canada and Greenland, Geological Survey of Canada, vol 1, pp 74–76Google Scholar
  44. Saha AK, Gupta RP, Sarkar I, Arora MK, Csaplovics E (2005) An approach for GIS-based statistical landslide susceptibility zonation—with a case study in the Himalayas. Landslides 2:61–69. doi: 10.1007/s10346-004-0039-8 CrossRefGoogle Scholar
  45. Sarkar S, Kanungo DP, Patra AK, Kumar P (2008) GIS based spatial data analysis for landslide susceptibility mapping. J MT SCI 5:52–62. doi: 10.1007/s11629-008-0052-9 CrossRefGoogle Scholar
  46. Sawatzky DL, Raines GL, Bonham-Carter GF (2009) Spatial data modeller.
  47. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247. National Academy Press, Washington, DC, pp 129–177. ISBN 0-309-06151-2Google Scholar
  48. Thurber Consultants Ltd (1983) Debris torrent and flooding hazards Highway 99, Howe Sound. Report to B.C. Ministry of Transportation and HighwaysGoogle Scholar
  49. van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30:399–419. doi: 10.1023/B:NHAZ.0000007097.42735.9e CrossRefGoogle Scholar
  50. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72:1–12. doi: 10.1016/j.catena.2007.01.003 CrossRefGoogle Scholar
  51. Yesilnacar E, Topal T (2005) Landslide susceptibility mapping: a comparison of logistic regression and neural network methods in a medium scale study, Hendek region (Turkey). Eng Geol 79:251–266. doi: 10.1016/j.enggeo.2005.02.002 CrossRefGoogle Scholar
  52. Zadeh LA (1965) Fuzzy sets. Inform Control 8:338–353CrossRefGoogle Scholar
  53. Zimmermann H-J, Zysno P (1980) Latent connectivities in human decision making. Fuzzy Sets Syst 4:37–51. doi: 10.1016/0165-0114(80)90062-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • A. Blais-Stevens
    • 1
  • P. Behnia
    • 1
  • M. Kremer
    • 1
  • A. Page
    • 1
  • R. Kung
    • 2
  • G. Bonham-Carter
    • 1
  1. 1.Geological Survey of CanadaOttawaCanada
  2. 2.Geological Survey of CanadaSidneyCanada

Personalised recommendations