Advertisement

Predicting the saturated hydraulic conductivity of soils: a review

  • Robert P. Chapuis
Original Paper

Abstract

This paper examines and assesses predictive methods for the saturated hydraulic conductivity of soils. The soil definition is that of engineering. It is not that of soil science and agriculture, which corresponds to “top soil” in engineering. Most predictive methods were calibrated using laboratory permeability tests performed on either disturbed or intact specimens for which the test conditions were either measured or supposed to be known. The quality of predictive equations depends highly on the test quality. Without examining all the quality issues, the paper explains the 14 most important mistakes for tests in rigid-wall or flexible-wall permeameters. Then, it briefly presents 45 predictive methods, and in detail, those with some potential, such as the Kozeny-Carman equation. Afterwards, the data of hundreds of excellent quality tests, with none of the 14 mistakes, are used to assess the predictive methods with a potential. The relative performance of those methods is evaluated and presented in graphs. Three methods are found to work fairly well for non-plastic soils, two for plastic soils without fissures, and one for compacted plastic soils used for liners and covers. The paper discusses the effects of temperature and intrinsic anisotropy within the specimen, but not larger scale anisotropy within aquifers and aquitards.

Keywords

Permeability Hydraulic conductivity Porosity Test Prediction 

List of symbols

AD, ac

Coefficients in predictive equations

CK

Permeability change index

CU

Coefficient of uniformity, C U = d 60/d 10

d

Grain size (mm)

dx

Grain size (mm) such that x % of the solid mass is made of grains finer than d x

e

Void ratio (m3/m3); e = n/(1−n)

eL

Void ratio at the liquid limit (m3/m3)

emax, emin

Maximum, minimum void ratio (m3/m3)

GSDC

Grain size distribution curve

h

Hydraulic head (m)

Gs

Specific gravity of solids, G s = ρ s/ρ w

ID, Ie

Density indexes (%)

IL

Liquidity index (%)

IP

Plasticity index (%)

IS

Shrinkage index (%)

K

Hydraulic conductivity (m/s)

K

Hydraulic conductivity tensor (matrix)

Ksat

Saturated hydraulic conductivity (m/s)

n

Porosity (m3/m3)

nc

Porosity after compaction (m3/m3)

nmax, nmin

Maximum, minimum porosity (% or m3/m3)

ne

Effective porosity (% or m3/m3)

p

Portion of clay minerals (%)

PL

Piezometric level (m)

rK

Anisotropy ratio, r K = K max/K min

RF

Roundness factor (number)

Sr

Degree of saturation (% or m3/m3)

Src

Degree of saturation (% or m3/m3) after compaction

SS

Specific surface (m2/kg)

Ss

Specific storativity (m−1)

t

Time (s)

T

Temperature (degrees Celsius)

w

Water content (% or kg/kg)

wL

Liquid limit (% or kg/kg)

wP

Plastic limit (% or kg/kg)

WRC

Water retention curve (θ vs. u)

Greek letters

αL

Longitudinal dispersivity (m)

γs, γw

Specific gravity (kN/m3) of solids, of water

μx

Water dynamic viscosity (Pa·s) at temperature x

μw

Water dynamic viscosity (Pa·s)

ρd

Dry density (kg/m3)

ρs, ρw

Density (kg/m3) of solids, of water

θ

Volumetric water content (m3/m3)

Résumé

Cet article examine et évalue les méthodes de prédiction de la conductivité hydraulique saturée des sols. La définition du sol est celle du génie. Ce n’est pas celle de science du sol et agriculture qui correspond au sol de surface en génie. La plupart des méthodes prédictives ont été calibrées avec des essais de perméabilité de laboratoire, réalisés sur des échantillons remaniés ou intacts, pour lesquels les conditions d’essai étaient soit mesurées soit supposées être connues. La qualité des équations prédictives dépend fortement de la qualité des essais. Sans examiner tous les aspects de qualité, l’article explique les 14 erreurs les plus importantes pour les essais en perméamètre à paroi rigide ou à paroi souple. Après, il présente brièvement 45 méthodes prédictives, et en détail celles avec potentiel comme l’équation de Kozeny-Carman. Ensuite, les données de centaines d’essais d’excellente qualité, sans aucune des 14 erreurs, sont utilisées pour évaluer les méthodes prédictives avec potentiel. La performance relative de ces méthodes est évaluée et présentée en graphes. On trouve que trois méthodes fonctionnent bien pour les sols non plastiques, deux pour les sols plastiques sans fissures, et une pour les sols plastiques compactés utilisés en tapis et couvertures. L’article discute les effets de la température et de l’anisotropie intrinsèque du spécimen, mais pas de l’anisotropie à plus grande échelle dans les aquifères et aquitards.

Mots clés

Perméabilité Conductivité hydraulique Porosité Essai Prédiction 

Notes

Acknowledgments

This paper is a result of a research program sponsored by the Natural Sciences and Engineering Council of Canada to improve the reliability of permeability and aquifer tests. The author thanks A. Gatien, M. Benabdallah, F. Réginensi, M. Pérez, and many summer students for their help in testing soil specimens, A. Yelon, S. Weber, and F. Duhaime for their help in checking the manuscript and the proofs.

References

  1. Ag A, Silva A (1998) Consolidation and permeability behavior of high porosity seabed sediments. Geotech Testing J 21(3):185–194CrossRefGoogle Scholar
  2. Akbulut S (2005) Artificial neural networks for predicting the hydraulic conductivity of coarse-grained soils. Eurasian Soil Sci 38(4):392–398Google Scholar
  3. Albrecht BA, Benson CH (2001) Effect of desiccation on compacted natural clays. J Geotech Geoenv Eng 127(1):67–75CrossRefGoogle Scholar
  4. Al-Tabbaa A, Wood DM (1987) Some measurements of the permeability of kaolin. Géotechnique 37(4):499–503CrossRefGoogle Scholar
  5. Alyamani MS, Sen Z (1993) Determination of hydraulic conductivity from grain-size distribution curves. Ground Water 31(4):551–555CrossRefGoogle Scholar
  6. Arnepalli DN, Shanthakumar S, Hanumantha Rao B, Singh DN (2008) Comparison of methods for determining specific-surface area of fine-grained soils. Geotech Geol Eng 26:121–132CrossRefGoogle Scholar
  7. Arya LM, Leij FJ, Shouse PJ, van Genuchten MT (1999) Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci Soc Am J 63:1063–1070CrossRefGoogle Scholar
  8. Arya LM, Heitman JL, Thapa BB, Bowman DC (2010) Predicting saturated hydraulic conductivity of golf course sands from particle-size distribution. Soil Sci Soc Am J 74(1):33–37CrossRefGoogle Scholar
  9. ASTM (2011a) Standard D2434—Permeability of granular soils (Constant Head). In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  10. ASTM (2011b) Standard D5856—Measurement of hydraulic conductivity of porous material using a rigid-wall compaction-mold permeameter. In: ASTM Annual CDs of Standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  11. ASTM (2011c) Standard D5084—Measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  12. ASTM (2011d) Standard D422: Standard Test Method for Particle-Size Analysis of Soils. In: ASTM Annual CDs of Standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  13. ASTM (2011e) Standard D4253—Maximum index density and unit weight of soils using a vibratory table. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  14. ASTM (2011f) Standard D4254—Minimum Index Density and unit weight of soils and calculation of relative density. In: ASTM annual CDs of standards, vol 04.08, West Conshohocken, PAGoogle Scholar
  15. Aubertin M, Bussière B, Chapuis RP (1996) Hydraulic conductivity of homogenized tailings from hard rock mines. Can Geotech J 33:470–482CrossRefGoogle Scholar
  16. Aubertin M, Chapuis RP, Mbonimpa M (2005) Goodbye Hazen; Hello, Kozeny-Carman: discussion. ASCE J Geotech Geoenviron Eng 131(8):1056–1057CrossRefGoogle Scholar
  17. Babu GL, Pandian NS, Nagaraj TS (1993) A re-examination of the permeability index of clays. Can Geotech J 30:187–191CrossRefGoogle Scholar
  18. Baldwin M, Gosling D (2009) BS EN ISO 22475-1: implications for geotechnical sampling in the UK. Ground Eng, August pp 28–31Google Scholar
  19. Bandini P, Shathiskumar S (2009) Effects of silt content and void ratio on the saturated hydraulic conductivity and compressibility of sand-silt mixtures. ASCE J Geotech Geoenviron Eng 135(12):1976–1980Google Scholar
  20. Barr DW (2001) Coefficient of permeability determined by measurable parameters. Ground Water 39(3):356–361CrossRefGoogle Scholar
  21. Barrande M, Bouchet R, Denoyel R (2007) Tortuosity of porous particles. Anal Chem 79(23):9115–9121CrossRefGoogle Scholar
  22. Bear J (1972) Dynamics of fluids in porous media. Elsevier, New YorkGoogle Scholar
  23. Beard DC, Weyl PK (1973) Influence of texture on porosity and permeability of unconsolidated sand. AAPG Bulletin 57(2):349–369Google Scholar
  24. Benabdallah EM, Chapuis RP (2007) Studying the influence of scale effects when computing the hydraulic conductivity of a Champlain clay. In: Proceedings of 60th Can Geotech Conf, Ottawa, pp 425–432Google Scholar
  25. Benson CH, Boutwell GP (2000) Compaction conditions and scale-dependent hydraulic conductivity of compacted clay liners. ASTM STP 1384:254–273Google Scholar
  26. Benson CH, Zhai H, Wang X (1994) Estimating hydraulic conductivity of compacted clay liners. ASCE J Geotech Eng 120(2):366–387CrossRefGoogle Scholar
  27. Berilgen SA, Berilgen MM, Ozaydin IK (2006) Compression and permeability relationships in high water content clays. Appl Clay Sci 31:249–261CrossRefGoogle Scholar
  28. Beyer W (1964) Zur Bestimmung der Wasserdurchlässigkeit von Saden und Kiesen, aus der Kornverteilungskurve. Z Wasserwirt-Wassertech 14:165–168 (in German)Google Scholar
  29. Bishop AW (1948) A new sampling tool for use in cohesionless sands below ground water level. Géotechnique 1(1):125–131CrossRefGoogle Scholar
  30. Black DK, Lee KL (1973) Saturating laboratory samples by back-pressure. ASCE J Geotech Eng Div 99(1):75–93Google Scholar
  31. Boadu FK (2000) Hydraulic conductivity of soils from grain-size distribution: new models. J Geotech Geoenviron Eng 126(8):739–746CrossRefGoogle Scholar
  32. Bolton AJ (2000) Some measurements of permeability and effective stress on a heterogeneous soil mixture: implications for recovery of inelastic strains. Eng Geology 57:95–104CrossRefGoogle Scholar
  33. Bolton AJ, Maltman AJ, Fisher Q (2000) Anisotropic permeability and bimodal pore-size distributions of fine-grained marine sediments. Mar Pet Geol 17:657–672CrossRefGoogle Scholar
  34. Brooks RH, Corey AT (1964) Hydraulic properties of porous media. Hydrology Paper 3, Colorado State University, Fort Collins, COGoogle Scholar
  35. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multi-molecular layers. J Am Chem Soc 60:309–319CrossRefGoogle Scholar
  36. Bryant SL, Mellor DW, Cade CA (1993) Physically representative network models of transport in porous media. AIChE J 39:387–396CrossRefGoogle Scholar
  37. Bussière B (2007) Colloquium 2004: hydrogeotechnical properties of hard rock tailings from metal mines and emerging geoenvironmental disposal approaches. Can Geotech J 44(9):1019–1052CrossRefGoogle Scholar
  38. Camapum de Carvalho J, Domaschuk L, Mieussens C (1986) Discussion of new procedure for saturating sand specimens. J Geotech Engng 112(1):101–102CrossRefGoogle Scholar
  39. Cao S, Glezen WH, Lerche I (1986) Fluid flow, hydrocarbon generation and migration: a quantitative model of dynamical evolution in sedimentary basins. Proc Offshore Technol Conf 2:267–276Google Scholar
  40. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng London 15:150–166Google Scholar
  41. Carman PC (1938a) Fundamental principles of industrial filtration (A critical review of present knowledge). Trans Inst Chem Eng London 16:168–188Google Scholar
  42. Carman PC (1938b) Determination of the specific surface of powders I. Trans J Soc Chem Ind 57:225–234Google Scholar
  43. Carman PC (1939) Permeability of saturated sands, soils and clays. J Agric Science 29:263–273Google Scholar
  44. Carman PC (1956) Flow of gases through porous media. Butterworths, LondonGoogle Scholar
  45. Carrier WD (1986) Consolidation parameters derived from index tests. Géotechnique 36(2):291–292CrossRefGoogle Scholar
  46. Carrier WD (2003) Goodbye, Hazen, Hello, Kozeny-Carman. ASCE J Geotech Geoenviron Eng 129:1054–1056CrossRefGoogle Scholar
  47. Carrier WD, Beckman JF (1984) Correlations between index tests and the properties of remoulded clays. Géotechnique 34(2):211–228CrossRefGoogle Scholar
  48. Cazaux D, Didier G (2002) Comparison between various field and laboratory measurements of the hydraulic conductivity of three clay liners. ASTM STP1415: 3–24Google Scholar
  49. Cerato AB (2001) Influence of specific surface area on geotechnical characteristics of fine-grained soils. MSc thesis, Civil Eng, Univ Massachusetts, AmherstGoogle Scholar
  50. Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech Testing J 25:1–7Google Scholar
  51. Chan HT, Kenney TC (1973) Laboratory investigation of permeability ratio of New Liskeard varved clay. Can Geotech J 10:453–472CrossRefGoogle Scholar
  52. Chapuis RP (1990a) Sand-bentonite liners: predicting permeability from laboratory tests. Can Geotech J 27(1):47–57CrossRefGoogle Scholar
  53. Chapuis RP (1990b) Sand-bentonite liners: field control methods. Can Geotech J 27(2):216–223CrossRefGoogle Scholar
  54. Chapuis RP (1992) Similarity of internal stability criteria for granular soils. Can Geotech J 29:711–713CrossRefGoogle Scholar
  55. Chapuis RP (1995) Controlling the quality of groundwater parameters: some examples. Can Geotech J 32:72–177CrossRefGoogle Scholar
  56. Chapuis RP (1998a) Overdamped slug tests in monitoring wells: review of interpretation methods with mathematical, physical, and numerical analysis of storativity influence. Can Geotech J 35(5):697–719CrossRefGoogle Scholar
  57. Chapuis RP (1998b) Poor borehole sampling and consequences for permeability evaluation. In: Proceedings of 8th Congress IAEG, Vancouver, Balkema, vol 1, pp 417–423Google Scholar
  58. Chapuis RP (1999) Borehole variable-head permeability tests in compacted clay liners and covers. Can Geotech J 36(1):39–51CrossRefGoogle Scholar
  59. Chapuis RP (2001) Extracting piezometric level and hydraulic conductivity from tests in driven flush-joint casings. Geotech Test J 24(2):209–219CrossRefGoogle Scholar
  60. Chapuis RP (2002) The 2000 R.M. Hardy Lecture: Full-scale hydraulic performance of soil–bentonite and compacted clay liners. Can Geotech J 39:417–439CrossRefGoogle Scholar
  61. Chapuis RP (2004a) Permeability tests in rigid-wall permeameters: determining the degree of saturation, its evolution and influence on test results. Geotech Test J 27(3):304–313Google Scholar
  62. Chapuis RP (2004b) Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio. Can Geotech J 41(5):787–795CrossRefGoogle Scholar
  63. Chapuis RP (2007) Professor, I have forgotten to measure an elevation for my falling-head permeability test. Geotechnical News 25(2):38–42Google Scholar
  64. Chapuis RP (2008) Predicting the saturated hydraulic conductivity of natural soils. Geotechnical News 26(2):47–50Google Scholar
  65. Chapuis RP (2009) Interpreting slug tests with large data sets. Geotech Test J 32(2):139–146Google Scholar
  66. Chapuis RP (2010) Using a leaky swimming pool for a huge falling-head permeability test. Engng Geology 114(1–2):65–70CrossRefGoogle Scholar
  67. Chapuis RP (2012) Estimating the in situ porosity of sandy soils sampled in boreholes. Engng Geology (submitted)Google Scholar
  68. Chapuis RP, Aubertin M (2003) On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil. Can Geotech J 40(3):616–628CrossRefGoogle Scholar
  69. Chapuis RP, Aubertin M (2004) On the use of the Kozeny-Carman’s equation to predict the hydraulic conductivity of a soil: Reply. Can Geotech J 41(5):994–996CrossRefGoogle Scholar
  70. Chapuis RP, Aubertin M (2010) Influence of relative compaction on the hydraulic conductivity of completely decomposed granite in Hong Kong: Discussion. Can Geotech J 47(6):704–707CrossRefGoogle Scholar
  71. Chapuis RP, Chenaf D (2002) Slug tests in a confined aquifer: experimental results in a large soil tank and numerical modelling. Can Geotech J 39(1):14–21CrossRefGoogle Scholar
  72. Chapuis RP, Chenaf D (2003) Variable-head permeability tests in driven flush-joint casings: Physical and numerical modeling. Geotech Test J 26(3):245–256Google Scholar
  73. Chapuis RP, Gill DE (1989) Hydraulic anisotropy of homogeneous soils and rocks: influence of the densification process. Bull Int Assoc Eng Geol 39:75–86CrossRefGoogle Scholar
  74. Chapuis RP, Légaré PP (1992) A simple method for determining the surface area of fine aggregates and fillers in bituminous mixtures. In Effects of Aggregates and Mineral Fillers on Asphalt Mixture Performance. ASTM STP 1147:177–186Google Scholar
  75. Chapuis RP, Sabourin L (1989) The effects of installation of piezometers and wells on groundwater characteristics and measurements. Can Geotech J 26(4):604–613CrossRefGoogle Scholar
  76. Chapuis, RP, Tournier JP (2006) Simple graphical methods to assess the risk of internal erosion. In: Proceedings of ICOLD Barcelona 2006, Question 86, Balkema, pp 319–335Google Scholar
  77. Chapuis RP, Tournier JP (2008) Assessing the quality of split spoon samples. Geotech News 26(3):46–48Google Scholar
  78. Chapuis RP, Paré JJ, Lavallée JG (1981) Essais de perméabilité à niveau variable. In: Proceedings of 10th ICSMFE, Stockholm, Vol 1, pp 401–406Google Scholar
  79. Chapuis RP, Baass K, Davenne L (1989a) Granular soils in rigid-wall permeameters: method for determining the degree of saturation. Can Geotech J 26:71–79CrossRefGoogle Scholar
  80. Chapuis RP, Gill DE, Baass K (1989b) Laboratory permeability tests on sand: Influence of the compaction method on anisotropy. Can Geotech J 26:614–622CrossRefGoogle Scholar
  81. Chapuis RP, Lavoie J, Girard D (1992) Design, construction, performance and repairs of the soil-bentonite liners of two lagoons. Can Geotech J 29(5):638–649CrossRefGoogle Scholar
  82. Chapuis RP, Contant A, Baass KA (1996) Migration of fines in 0–20 mm crushed base during placement, compaction, and seepage under laboratory conditions. Can Geotech J 33:168–176CrossRefGoogle Scholar
  83. Chapuis RP, Dallaire V, Marcotte D, Chouteau M, Acevedo N, Gagnon F (2005) Evaluating the hydraulic conductivity at three different scales within an unconfined aquifer at Lachenaie, Quebec. Can Geotech J 42(4):1212–1220CrossRefGoogle Scholar
  84. Chapuis RP, Mbonimpa M, Dagenais AM, Aubertin M (2006) A linear graphical method to predict the effect of compaction on the hydraulic conductivity of clay liners and covers. Bull Eng Geol Env 65(1):93–98CrossRefGoogle Scholar
  85. Chapuis RP, Masse I, Madinier B, Aubertin M (2007) A drainage column test for determining unsaturated properties of coarse materials. Geotech Testing J 30(2):83–89Google Scholar
  86. Christiansen JE (1944) Effect of entrapped air upon the permeability of soils. Soil Sci 58(5):355–365CrossRefGoogle Scholar
  87. Civan F (2001) Scale effect on porosity and permeability: kinetics, model and correlation. AIChE J 47(2):271–287CrossRefGoogle Scholar
  88. Costa A (2006) Permeability-porosity relationship: a re-examination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2) doi: 10.1029/2005GL025134
  89. Côté J, Fillion MH, Konrad JM (2011) Intrinsic permeability of materials ranging from sand to rock-fill using natural convection tests. Can Geotech J 48(5):679–690CrossRefGoogle Scholar
  90. Craeger WP, Justin JD, Hinds J (1947) Engineering for dams, Vol 2, p 646, Wiley & Sons, New YorkGoogle Scholar
  91. Crawford R, Jones GF, You L, Wu Q (2011) Compression-dependent permeability measurement for random soft porous media and its implication for lift generation. Chem Eng Sci 66(3):294–302CrossRefGoogle Scholar
  92. Cronican AE, Gribb MM (2004) Hydraulic conductivity prediction for sandy soils. Ground Water 42(3):459–464CrossRefGoogle Scholar
  93. Cyr RY, Chiasson P (1999) Modeling subsoil drainage systems for urban roadways. Can Geotech J 26:799–809Google Scholar
  94. D’Andrea R (2001) Hydraulic conductivity of soils from grain-size distribution: new models: discussion. J Geotech Geoenviron Eng 127(10):899CrossRefGoogle Scholar
  95. Dallavale JM (1948) Micromeritics—the technology of fine particles, 2nd edn. Pitman, New-YorkGoogle Scholar
  96. Daniel DE (1994) State-of-the art: laboratory hydraulic conductivity test for saturated soil. In: Daniel DE, Trautwein SJ (eds) Hydraulic conductivity and waste contaminant transport in soil, Vol 1142 pp 30–78, ASTM STPGoogle Scholar
  97. Daniel DE, Trautwein SJ, Boynton SS, Foreman DE (1984) Permeability testing with flexible-wall permeameters. Geotech Testing J 7(3):113–122CrossRefGoogle Scholar
  98. Darcy H (1856) Les fontaines publiques de la ville de Dijon. Victor Dalmont, ParisGoogle Scholar
  99. Dassargues A, Biver P, Monjoie A (1991) Geotechnical properties of the Quaternary sediments in Shanghai. Eng Geol 31(1):71–90CrossRefGoogle Scholar
  100. David C, Wong TF, Zhu WL, Zhang J (1994) Laboratory measurements of compaction-induced permeability change in porous rocks: implications for the generation and maintenance of pore pressure excess in the crust. Pure Appl Geophys 143(1–3):425–456CrossRefGoogle Scholar
  101. Davis SN (1989) Correlations of permeability and grain size: discussion. Ground Water 28(1):116CrossRefGoogle Scholar
  102. De Bruyn CMA, Collins LF, Williams AAB (1957) The specific surface, water affinity, and potential expansiveness of clays. Clay Mineralogy Bull 3:120–128CrossRefGoogle Scholar
  103. De Marsily G, Delay F, Goncalves J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrol J 13(1):161–183Google Scholar
  104. DeJong JT, Christoph GG (2009) Influence of particle properties and initial specimen state on one-dimensional compression and hydraulic conductivity. J Geotech Geoenv Eng 135(3):449–454CrossRefGoogle Scholar
  105. Delage P, Lefebvre G (1984) Study of the structure of a sensitive Champlain clay and its evolution during consolidation. Can Geotech J 21:21–35CrossRefGoogle Scholar
  106. Delage P, Audiguier M, Cui YJ, Howat MD (1996) Microstructure of a compacted silt. Can Geotech J 33:150–158CrossRefGoogle Scholar
  107. Delage P, Sultan N, Cui YJ (2000) On the thermal consolidation of Boom clay. Can Geotech J 37:343–354CrossRefGoogle Scholar
  108. Dewhurst DN, Aplin AC, Sarda JP (1999) Influence of clay fraction on pore-scale properties and hydraulic conductivity of experimentally compacted mudstones. J of Geophys Res 104(B12):29261–29274Google Scholar
  109. Dolinar B (2009) Predicting the hydraulic conductivity of saturated clays using plasticity-value correlations. Appl Clay Sci 45:90–94CrossRefGoogle Scholar
  110. Dolinar B, Trauner L (2004) Liquid limit and specific surface of clay particles. Geotech Test J 27(6):580–584Google Scholar
  111. Dolinar B, Mišič M, Trauner L (2007) Correlation between surface area and Atterberg limits of fine-grained soils. Clays Clay Miner 55(5):519–523CrossRefGoogle Scholar
  112. Donohue TJ, Wensrich CM (2008) The prediction of permeability with the aid of computer simulations. Part Sci Technol 26:97–108CrossRefGoogle Scholar
  113. Dorsey NE (1968) Properties of ordinary water-substance in all its phases: water vapour, water, and all the ices. Hafner Publishing Company, New YorkGoogle Scholar
  114. Driscoll FG (1986) Groundwater and Wells, 2nd edn. Johnson Div, St. Paul, MIN 1108 pGoogle Scholar
  115. Dubreuil-Boisclair C, Gloaguen E, Marcotte D, Giroux B (2011) Heterogeneous aquifer characterization from ground penetrating radar tomography and borehole hydrogeophysical data using nonlinear Bayesian simulations. Geophysics 76(4):J13–J25Google Scholar
  116. Durner W (1994) Hydraulic conductivity estimation for soils with heterogeneous pore structure. Water Resour Res 30(2):211–223CrossRefGoogle Scholar
  117. Dutta N (1987) Fluid flow in low permeable porous media. In: Doligetz B (ed) Migration of Hydrocarbons in Sedimentary Basins. Technip, Paris, pp 567–596Google Scholar
  118. Erzin Y, Gumaste SD, Gupta AK, Singh DN (2009) Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Can Geotech J 46:955–968CrossRefGoogle Scholar
  119. Esselburn JD, Ritzi RW Jr, Dominic DF (2011) Porosity and permeability in ternary sediment mixtures. Ground Water 49(3):393–402CrossRefGoogle Scholar
  120. Farrar DM, Coleman JD (1967) The correlation of surface area with other properties of 19 British clay soils. J of Soil Science 18(1):118–124CrossRefGoogle Scholar
  121. Ferrandon J (1948) Les lois d’écoulement de filtration. Le Génie Civil 125(2):24–28Google Scholar
  122. Fredlund MD, Xing AQ, Huang SY (1994) Predicting the permeability function for unsaturated soils using the soil-water characteristic curve. Can Geotech J 31(4):533–546CrossRefGoogle Scholar
  123. Fredlund MD, Wilson GW, Fredlund DG (2002) Use of grain-size distribution for the estimation of the soil-water characteristic curve. Can Geotech J 39(5):1103–1117CrossRefGoogle Scholar
  124. Garcia-Bengochea I, Lovell CW (1981) Correlative measurements of pore size distribution and permeability in soils. In permeability and ground water contaminant transport. ASTM STP 746:137–150Google Scholar
  125. Garcia-Bengochea I, Lovell CW, Altschaeffl AG (1979) Pore distribution and permeability of silty clays. J Geotech Eng 105(GT7):839–856Google Scholar
  126. Ghanbarian-Alavijeh B, Liaghat AM, Sohrabi S (2010) Estimating saturated hydraulic conductivity from soil physical properties using neural network model. World Acad Sci Eng Technol 62:131–136Google Scholar
  127. Ghassemi A, Pak A (2011a) Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method. Int J Num Anal Meth Geomech 35(8):886–901CrossRefGoogle Scholar
  128. Ghassemi A, Pak A (2011b) Numerical study of factors influencing relative permeabilites of two immiscible fluids through porous media using lattice Boltzann method. J of Petroleum Sci Eng 77(1):135–145CrossRefGoogle Scholar
  129. Gloaguen E, Chouteau M, Marcotte D, Chapuis R (2001) Estimation of hydraulic conductivity of an unconfined aquifer using cokriging of GPR and hydrostratigraphic data. J Appl Geophys 47:135–152CrossRefGoogle Scholar
  130. Göktepe AB, Sezer A (2010) Effect of particle shape on density and permeability of sand. Proc Instit Civil Eng 163:307–320Google Scholar
  131. Govindaraju RS, Reddi LN, Bhargava SK (1995) Characterization of preferential flow paths in compacted sand-clay mixtures. J Geotech Eng 121(9):652–659CrossRefGoogle Scholar
  132. Green RE, Corey JC (1960) Calculation of hydraulic conductivity: a further evaluation of some predictive methods. Proc Soil Sci Soc Am 35:3–8CrossRefGoogle Scholar
  133. Gregg SJ, Sing KWS (1967) Adsorption Surface Area and Porosity. Academic Press, LondonGoogle Scholar
  134. Gupta SC, Larson WE (1979) Estimating soil–water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15(6):1633–1635Google Scholar
  135. Guyonnet D, Gourry JC, Bertrand L, Amraoui N (2003) Heterogeneity detection in an experimental clay liner. Can Geotech J 40(1):149–160CrossRefGoogle Scholar
  136. Hansen D (2004) On the use of the Kozeny–Carman equation to predict the hydraulic conductivity of soils: Discussion. Can Geotech J 41:990–993CrossRefGoogle Scholar
  137. Harleman DRF (1963) Dispersion-permeability correlation in porous media. ASCE J Hydraulics Div 89(2):67–85Google Scholar
  138. Hassler GL, Rice RR, Leeman EM (1936) Investigations on the recovery of oil from sandstone by gas-drive. Petrol Trans AIME 118:116–137Google Scholar
  139. Hatanaka M, Uchida A, Takehara N (1997) Permeability characteristics of high-quality undisturbed sands measured in a triaxial cell. Soils Found 37(3):129–135CrossRefGoogle Scholar
  140. Hatanaka M, Uchida A, Taya Y, Takehara N, Hagisawa T, Sakou N, Ogawa S (2001) Permeability characteristics of high-quality undisturbed gravely soils measured in laboratory tests. Soils Found 41(3):45–55CrossRefGoogle Scholar
  141. Haug MD, Wong LC (1992) Impact of molding water content on hydraulic conductivity of compacted soil-bentonite. Can Geotech J 29(2):253–262CrossRefGoogle Scholar
  142. Haug MD, Buettner WG, Wong LC (1994) Impact of leakage on precision in low gradient flexible wall permeability testing. In: Daniel DE, Trautwein SJ (eds) Hydraulic conductivity and waste contaminant transport in soils, vol 1142, pp 390–406, ASTM STP Google Scholar
  143. Haverkamp R, Parlange JY (1986) Predicting the water retention curve from particle-size distribution: I. Sandy soils without organic matter. Soil Sci 142:325–339CrossRefGoogle Scholar
  144. Hazen A (1892) Some physical properties of sand and gravel, with special reference to their use in filtration. Massachusetts State Board of Health, 24th annual report, Boston, pp 539–556Google Scholar
  145. Hazen A (1911) Dams on sand formations: discussion. Trans ASCE 73:199–203Google Scholar
  146. Horgan GW (1998) Mathematical morphology for analysing soil structure from images. Europ J Soil Sci 49(2):161–173CrossRefGoogle Scholar
  147. Hossain D (1995) Leakage control of long-duration testing of triaxial specimens. ASCE J Geotech Eng 121(11):810–813CrossRefGoogle Scholar
  148. Houpeurt A (1974) Mécanique des fluides dans les milieux poreux—Critiques et recherches. Technip, ParisGoogle Scholar
  149. Hvorslev MJ (1940) The present status of the art of obtaining undisturbed samples of soils. Harvard Univ, Soil Mech Series No. 14Google Scholar
  150. Hvorslev MJ (1949) Subsurface exploration and sampling of soils for civil engineering purposes. The Engineering Foundation, New York, 521 pGoogle Scholar
  151. Hwang SI, Powers SE (2003) Using particle-size distribution models to estimate soil hydraulic properties. Soil Sci Soc Am J 67:1103–1112CrossRefGoogle Scholar
  152. ISSMFE (1981) International manual for the sampling of soft cohesive soils. Tokai Univ Press, TokyoGoogle Scholar
  153. Jabro JD (1992) Estimation of saturated hydraulic conductivity of soils from particle-size distribution and bulk-density data. Trans ASAE 35:557–560Google Scholar
  154. Jackson RE (2003) An introduction to the effects of heterogeneities on the characterization and remediation of alluvial aquifers alluvial geosystems. Environ Eng Geosci 9(1):1–4CrossRefGoogle Scholar
  155. Juang CJ, Holtz RD (1986) Fabric, pore size distribution and permeability of sandy soils. ASCE J Geotech Eng 112:855–868CrossRefGoogle Scholar
  156. Juárez-Badillo E (1984) The permeability of natural soft clays. Part II: permeability characteristics: discussion. Can Geotech J 21:730–731CrossRefGoogle Scholar
  157. Kaoser S, Barrington S, Elektorowicz T, Ayadat T (2006) The influence of hydraulic gradient and rate of erosion on hydraulic conductivity of sand-bentonite mixtures. Soil Sedim Contamin 15(5):481–496CrossRefGoogle Scholar
  158. Kaubisch M, Fischer M (1985) Zur Berechnung des Filtrationskoeffizienten in Tagebaukippen. Teil 3: Ermittlung des Filtrationskoeffizienten für schluffige Feinsande aus Mischbodenkippen durch Korngrößenanalysen. Neue Bergbautechnik 15:142–143Google Scholar
  159. Kenney TC, Chan HT (1973) Laboratory investigation of permeability ratio of New Liskeard varved soil. Can Geotech J 10(3):453–472CrossRefGoogle Scholar
  160. Kenney TC, Lau D (1985) Internal stability of granular filters. Can Geotech J 22:215–225CrossRefGoogle Scholar
  161. Kenney TC, Lau D (1986) Internal stability of granular filters: reply. Can Geotech J 23:420–423CrossRefGoogle Scholar
  162. Kenney TC, Lau D, Ofoegbu GI (1984) Permeability of compacted granular materials. Can Geotech J 21:726–729CrossRefGoogle Scholar
  163. Kezdi A (1969) Increase of protective capacity of flood control dikes (in Hungarian). Dept of Geotechnique, Tech Univ Budapest, Report No.1Google Scholar
  164. Konrad JM, Pouliot N (1997) Ultimate state of reconstituted and intact samples of deltaic sand. Can Geotech J 34(5):737–748Google Scholar
  165. Koponen A, Kataja M, Timonen J (1997) Permeability and effective porosity of porous media. Phys Rev E 56(3):3319–3325CrossRefGoogle Scholar
  166. Kovács G (1981) Seepage hydraulics. Elsevier Science Publishers, AmsterdamGoogle Scholar
  167. Kozeny J (1927) Ueber kapillare Leitung des Wassers in Boden. Sitzungsber Akad, Wiss., Wien Math. Naturwiss. Kl. Abt.2a 13:271–306 (in German)Google Scholar
  168. Kozeny J (1953) Hydraulik. Springer, Wien (in German)CrossRefGoogle Scholar
  169. Krumbein WC (1941) Measurement and geological significance of shape and roundness of sedimentary particles. J Sediment Petrol 11(2):64–72Google Scholar
  170. Krumbein WC, Monk GD (1942) Permeability as a function of the size parameters of unconsolidated sands. Petrol Trans Am Inst Min Eng 151:153–163Google Scholar
  171. Krumbein WC, Sloss LL (1963) Stratigraphy and Sedimentation, 2nd edn. WH Freeman and Comp, San FranciscoGoogle Scholar
  172. Kunze RJ, Uehara G, Graham K (1968) Factors important in the calculation of hydraulic conductivity. Proc Soil Sc Soc Am 32:760–765CrossRefGoogle Scholar
  173. La Rochelle P, Sarrailh J, Tavenas F, Roy M, Leroueil S (1981) Cause of sampling disturbance and design of a new sampler for sensitive soils. Can Geotech J 18(1):52–66CrossRefGoogle Scholar
  174. Lambe TW (1958) The structure of compacted clay. ASCE J Soil Mech Found Div 84(SM2): 1654–1 to 34Google Scholar
  175. Lambe TW, Whitman (1969) Soil mechanics. John Wiley & Sons, New YorkGoogle Scholar
  176. Lapierre C, Leroeuil S, Locat S (1990) Mercury intrusion and permeability of Louiseville clay. Can Geotech J 27:761–773CrossRefGoogle Scholar
  177. Larsson R (1981) Drained behaviour of Swedish clays. Swedish Geotech Inst Report No.12Google Scholar
  178. L’Écuyer M, Chapuis RP, Aubertin M (1993) Field and laboratory investigations of hydraulic conductivity of acid producing mine tailings. In: Proceedings of ASCE-CSCE Conf on Env Engng, Montreal, Vol 1, pp 213–220Google Scholar
  179. Lefebvre G, Poulin C (1979) A new method of sampling in sensitive clay. Can Geotech J 16:226–233CrossRefGoogle Scholar
  180. Leij FJ, Russell WB, Lesch SM (1997) Closed–form expressions for water retention and conductivity data. Ground Water 35:848–858CrossRefGoogle Scholar
  181. Leong EC, Rahardjo H (1997) Permeability functions for unsaturated soils. J Geotech Geoenv Eng 125(12):1118–1126CrossRefGoogle Scholar
  182. Lerche I (1991) Inversion of dynamical indicators in quantitative basin analysis models I. Theoretical considerations. Math Geol 23(6):817–832CrossRefGoogle Scholar
  183. Leroueil S, Bouclin G, Tavenas F, Bergeron L, La Rochelle P (1990) Permeability anisotropy of natural clays as a function of strain. Can Geotech J 27(5):568–579CrossRefGoogle Scholar
  184. Li X, Zhang LM (2009) Characterization of dual-structure pore-size distribution of soil. Can Geotech J 46:129–141CrossRefGoogle Scholar
  185. Locat J, Lefebvre G, Ballivy G (1984) Mineralogy, chemistry, and physical properties interrelationships of some sensitive clays from Eastern Canada. Can Geotech J 21:530–540CrossRefGoogle Scholar
  186. Loudon AG (1952) The computation of permeability from simple soil tests. Géotechnique 3(3):165–183CrossRefGoogle Scholar
  187. Lowe J, Johnson TC (1960) Use of back-pressure to increase degree of saturation of triaxial test specimens. In: Proceedings of ASCE Conference on Shear Strength of Cohesive Soils, Boulder, CO, pp 819–836Google Scholar
  188. Lowell S, Shields JE (1991) Powder surface area and porosity. Chapman & Hall, LondonGoogle Scholar
  189. Lubochkov EA (1965) Graphical and analytical methods for the determination of internal stability of filters consisting of non cohesive soil. Izvestia, vniig 78:255–280 [In Russian]Google Scholar
  190. Lubochkov EA (1969) The calculation of suffossion properties of non-cohesive soils when using the non-suffossion analog. In: Proceedings of Int Conf Hyd Res, Pub Tech Univ Brno, Svazek B-5, Brno, Czechoslovakia, pp 135–148 [In Russian]Google Scholar
  191. Luczak-Wilamowska B (2004) Basic soil properties of a number of artificial clay-sand mixtures determined as a function of sand content. Lect Notes Earth Sci 104:308–315CrossRefGoogle Scholar
  192. Malinowska E, Szymanski A, Sas W (2011) Estimation of flow characteristics in peat. Geotech Testing J 33(4). doi: 10.1520/GTJ102783
  193. Marshall TJ (1958) A relation between permeability and size distribution of pores. J Soil Science 9(1):1–8CrossRefGoogle Scholar
  194. Marshall TJ (1962) Permeability equations and their models. In: Proceedings of symp interaction between fluids and particles, Euro Fed Chem Eng, London, pp 299–303Google Scholar
  195. Masch FD, Denny KJ (1966) Grain size distribution and its effect on the permeability of unconsolidated sands. Water Resour Res 2(4):665–677CrossRefGoogle Scholar
  196. Matyka M, Arzhang K, Zbigniew K (2008) Tortuosity-porosity relation in porous media flow. Phys Rev E 78(2). doi: 10.1103/PhysRevE.78.026306
  197. Mavis FT, Wilsey EF (1937) A study of the permeability of sand. Iowa State Univ Eng Bull 7:1–29Google Scholar
  198. Mavko G, Nur A (1997) The effect of a percolation threshold in the Kozeny-Carman relation. Geophysics 62(5):1480–1482Google Scholar
  199. Mazier G (1974) Méthodes de prélèvement des sols meubles. Annales de l’ITBTP 319:75–85Google Scholar
  200. Mbonimpa M, Aubertin M, Chapuis RP, Bussière B (2002) Practical pedotransfer functions for estimating the saturated hydraulic conductivity. Geotech Geol Eng 20(3):235–259CrossRefGoogle Scholar
  201. McKinlay DG, Safiullah AMM (1980) Pore size distribution and permeability of silty clays. ASCE J Geotech Eng Div 106(GT10):1165–1168Google Scholar
  202. Mesri G, Aljouni M (2007) Engineering properties of fibrous peats. J Geotech Geoenv Eng 133(7):850–866CrossRefGoogle Scholar
  203. Mesri G, Lo K, Feng TW (1994) Settlement of embankments on soft clays. Vertical and horizontal deformation of foundations and embankments, ASCE, New York, pp 8–56Google Scholar
  204. Mesri G, Olson RE (1971) Mechanisms controlling the permeability of clays. Clays Clay Miner 19:151–158CrossRefGoogle Scholar
  205. Michaels AS, Lin CS (1954) The permeability of kaolinite. Ind Eng Chemistry 46(6):1239–1246CrossRefGoogle Scholar
  206. Millington RJ, Quirk JP (1959) Permeability of porous media. Nature 183:387–388CrossRefGoogle Scholar
  207. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207CrossRefGoogle Scholar
  208. Minagawa H, Sakamoto Y, Komai T, Narita H, Mizutani K, Ohga K, Takahara N, Yamaguchi T (2009) Relation between pore-size distribution and permeability of sediments.In: Proceedings of 19th International Offshore and Polar Eng Conf, Osaka, Japan, June 21–26, 2009, pp 25–32Google Scholar
  209. Mitchell JK, Hooper DR, Campanella RG (1965) Permeability of compacted clays. ASCE J Soil Mech Found Div 91(SM4):41–65Google Scholar
  210. Moldrup P, Olesen T, Komatsu T, Schjonning P, Rolston DE (2001) Tortuosity diffusivity, and permeability in the soil liquid and gaseous phases. Soil Sci Soc Am J 65(3):613–623CrossRefGoogle Scholar
  211. Moraes JAP (1971) General conclusions concerning the hydrogeology of major valley alluvium in central United States. PhD thesis, Univ of Missouri, Columbia, CO, p 176Google Scholar
  212. Morin P (1991) Amélioration des mesures des propriétés de consolidation au laboratoire à l’aide du montage perméamétrique. Can Geotech J 28:127–133CrossRefGoogle Scholar
  213. Morin RH, LeBlanc DR, Troutman BM (2010) The influence of topology on hydraulic conductivity in a sand-and-gravel aquifer. Ground Water 48(2):181–190CrossRefGoogle Scholar
  214. Morris PH (2003) Compressibility and permeability correlations for fine-grained dredged materials. J Waterway Port Coastal Ocean Eng 129(4):188–191CrossRefGoogle Scholar
  215. Morris PH, Lockington DA, Apelt CJ (2000) Correlations for mine tailings consolidation parameters. Int J Surf Min Rec Environ 14(2):171–182CrossRefGoogle Scholar
  216. Mualem Y (1976) A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour Res 12:513–522CrossRefGoogle Scholar
  217. Muhunthan B (1991) Liquid limit and surface area of clays. Géotechnique 41:135–138CrossRefGoogle Scholar
  218. Nagaraj TS, Pandian NS, Narasimha Raju PSR (1991) An approach for prediction of compressibility and permeability behaviour of sand-bentonite mixes. Ind Geotech J 21(3):271–282Google Scholar
  219. Nagaraj TS, Pandian NS, Narasimha Raju PSR (1993) Stress state permeability relationships for fine-grained soils. Géotechnique 43(2):333–336CrossRefGoogle Scholar
  220. Nagaraj TS, Pandian NS, Narasimha Raju PSR (1994) Stress-state-permeability relations for overconsolidated clays. Géotechnique 44(2):349–352CrossRefGoogle Scholar
  221. Nakano K, Miyazaki T (2005) Predicting the saturated hydraulic conductivity of compacted subsoils using the non-similar media concept. Soil Tillage Res 84:145–453Google Scholar
  222. Navfac DM7 (1974) Design Manual—Soil mechanics, foundations, and earth structures. US Govt Printing Office, Washington, DCGoogle Scholar
  223. Nelson PH (1994) Permeability-porosity relationships in sedimentary rocks. Log Anal 35(3):38–62Google Scholar
  224. Nelson PH (2005) Permeability, porosity, and pore-throat size: a three-dimensional perspective. Petrophysics 46(6):452–455Google Scholar
  225. Neuzil CE (1994) How permeable are clays and shales. Water Resour Res 30(2):145–150CrossRefGoogle Scholar
  226. Nishida Y, Nakagawa S (1969) Water permeability and plastic index of soils. In: Proceedings of IASH-UNESCO Symposium Tokyo, Pub 89, pp 573–578Google Scholar
  227. Nogai T, Ihara M (1978) Study on air permeability of fiber assemblies oriented unidirectionally. J Text Mach Soc Jpn 31(12):T166–T170CrossRefGoogle Scholar
  228. O’Kelly BC (2006) Compression and consolidation anisotropy of some soft soils. Geotech Geol Eng 24:1715–1728CrossRefGoogle Scholar
  229. Olsen HW (1960) Hydraulic flow through saturated clays. In: Swineford A, Franks PC (eds) Proceedings of 9th national conference on clays and clay minerals, Lafayette, Indiana, Oct 5–8, 1960, Pergamon Press, New York, pp 131–161Google Scholar
  230. Olson RE, Daniel DE (1981) Measurement of the hydraulic conductivity of fine-grained soils. In permeability and groundwater contaminant transport. ASTM STP 746:18–64Google Scholar
  231. Orr CC, Dallavale JM (1959) Fine particle measurement size, surface and pore volume. MacMillan, New-YorkGoogle Scholar
  232. Othman MA, Benson CH, Chamberlain EJ, Zimmie TF (1994) Laboratory testing to evaluate changes in hydraulic conductivity of compacted clays caused by freeze-thaw: state-of-the-art. ASTM STP1142:227–254Google Scholar
  233. Panda MN, Lake LW (1994) Estimation of single-phase permeability from the parameters of a particle-size distribution. AAPG Bull 78(7):1028–1039Google Scholar
  234. Pane V, Croce P, Znidarcic D, Ko HY, Olsen HW, Schiffman RL (1983) Effects of consolidation on permeability measurements for soft clay. Géotechnique 33:67–71CrossRefGoogle Scholar
  235. Pape H, Clauser C, Iffland J (1999) Permeability prediction based on fractal pore space geometry. Geophysics 64(5):1447–1460Google Scholar
  236. Pape H, Clauser C, Iffland J (2000) Variation of permeability with porosity in sandstone diagenesis interpreted with a fractal pore model. Pure Appl Geophys 157(4):603–619CrossRefGoogle Scholar
  237. Peng X, Boming Y (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81CrossRefGoogle Scholar
  238. Pillsbury AF, Appleman D (1950) Effects of particle size and temperature on the permeability of sand to water. Soil Sci 70:299–300CrossRefGoogle Scholar
  239. Pisani L (2011) Simple expression for the tortuosity of porous media. Transp Porous Media 88(2):193–203CrossRefGoogle Scholar
  240. Poulsen TG, Moldrup P, Jacobsen OH (1998) One-parameter models for unsaturated hydraulic conductivity. Soil Sci 163:425–435CrossRefGoogle Scholar
  241. Powers MC (1953) A new roundness scale for sedimentary particles. J Sedim Petrol 23(2):117–119Google Scholar
  242. Prakash K, Sridharan A (2002) Determination of liquid limit from equilibrium sediment volume. Géotechnique 52(9):693–696Google Scholar
  243. Puckett WE, Dane JH, Hajek BF (1985) Physical and mineralogical data to determine soil hydraulic properties. Soil Science Soc Am J 49(4):831–836CrossRefGoogle Scholar
  244. Rajani BB (1988) A simple model for describing variation in permeability with porosity for unconsolidated sands. In Situ 12:209–226Google Scholar
  245. Randolph BW, Cai J, Heydinger AG, Gupta JD (1996) Laboratory study of hydraulic conductivity for coarse aggregate bases. Transp Res Rec 1519:19–27CrossRefGoogle Scholar
  246. Rawls WJ, Brakensiek DL, Logsdon SD (1993) Predicting saturated hydraulic conductivity utilizing fractal principles. Soil Science Soc Am J 57:1193–1197CrossRefGoogle Scholar
  247. Raymond GP (1966) Laboratory consolidation of some normally consolidated soils. Can Geotech J 3(4):217–234CrossRefGoogle Scholar
  248. Rice JR (1992) Fault stress states, pore pressure distributions, and the weakness of the San Andreas Fault. In: Evans B, Wong TF (eds) Fault Mechanics and Transport properties of Rocks, Academic Press, pp 475–503Google Scholar
  249. Richards LA (1931) Capillary conduction of liquids through porous medium. Physics 1:318–333CrossRefGoogle Scholar
  250. Rittenhouse G (1943) A visual method of estimating two dimensional sphericity. J Sedim Petrol 13:79–81Google Scholar
  251. Ross J, Ozbek M, Pinder GE (2007) Hydraulic conductivity estimation via fuzzy analysis of grain size data. Math Geol 39:765–780CrossRefGoogle Scholar
  252. Sällfors G, Öberg-Högsta AL (2002) Determination of hydraulic conductivity of sand-bentonite mixtures for engineering purposes. Geotech Geol Eng 20(1):65–80CrossRefGoogle Scholar
  253. Samarasinghe AM, Huang YHF, Drnevich P (1982) Permeability and consolidation of normally consolidated soils. ASCE J Geotech Eng Div 108(6):835–850Google Scholar
  254. Santamarina JC, Klein KA, Wang YH, Prencke E (2002) Specific surface area: determination and relevance. Can Geotech J 39:233–241CrossRefGoogle Scholar
  255. Schaap MG, Fj Leij, van Genuchten MT (1998) Neural network analysis for hierarchical prediction of soil hydraulic properties. Soil Science Soc of Amer J 62(4):847–855CrossRefGoogle Scholar
  256. Schaap MG, Fj Leij, van Genuchten MT (2001) ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. J Hydrol 251(3–4):163–176CrossRefGoogle Scholar
  257. Scheidegger AE (1974) The physics of flow through porous media, 3rd edn. Univ Toronto Press, Toronto, OntGoogle Scholar
  258. Scholes ON, Clayton SA, Hoadley AFA, Tiu C (2007) Permeability anisotropy due to consolidation of compressible porous media. Transp Porous Media 68:365–387CrossRefGoogle Scholar
  259. Schulze-Makuch D, Carlson DA, Cherkauer DS, Malik P (1999) Scale dependency of hydraulic conductivity in heterogeneous media. Ground Water 37(6):904–919CrossRefGoogle Scholar
  260. Seelheim F (1880) Methoden zur Bestimmung der Durchlässigkeit des Bodens. Z Anal Chem 19:387–402CrossRefGoogle Scholar
  261. Sepaskhah AR, Tabarzad A, Fooladmand RH (2010) Physical and empirical models for estimation of the specific surface area of soils. Arch Agron Soil Sci 56(3):325–335Google Scholar
  262. Sezer A, Göktepe AB, Altun S (2009) Estimation of the permeability of granular soils using neuro-fuzzy system. In: AIAI-2009 Workshops Proc, pp 333–342Google Scholar
  263. Shahabi AA, Das BM, Tarquin AJ (1984) Empirical relation for coefficient of permeability of sand. In: Nat Conf Pub, Inst of Engineers, Australia, 84(2):54–57Google Scholar
  264. Shahnazari MR, Vahabikashi A (2011) Permeability prediction of porous media with variable porosity by injection of Stokes flow over multi-particles. J of Porous Media 14(3):243–250CrossRefGoogle Scholar
  265. Shepherd RG (1989) Correlations of permeability and grain size. Ground Water 27(5):633–638CrossRefGoogle Scholar
  266. Sherard JL (1979) Sinkholes in dams of coarse, broadly graded soils. In: Trans 13th Int Congress on Large Dams, New Delhi, India, ICOLD, Paris, vol 2, pp 25–35Google Scholar
  267. Shou D, Jintu F, Feng D (2011) Hydraulic permeability of fibrous porous media. Int J Heat Mass Transf 54(17–18):4009–4018CrossRefGoogle Scholar
  268. Siddique A, Safiullah AMM (1995) Permeability characteristics of reconstituted Dhaka clay. J Civil Eng Div Inst Eng Bangladesh CE23(1):103–115Google Scholar
  269. Sims JE, Elsworth D, Cherry JA (1996) Stress-dependent flow through fractured clay till: a laboratory study. Can Geotech J 33:449–457CrossRefGoogle Scholar
  270. Singh PN, Wallender WW (2008) Effects of adsorbed water layer in predicting saturated hydraulic conductivity for clays with Kozeny-Carman equation. J Geotech Geoenv Eng 134(6):829–836CrossRefGoogle Scholar
  271. Singh S, Seed HB, Chan CK (1982) Undisturbed sampling of saturated sands by freezing. ASCE J of the Geotech Engng Div 108(2):247–264Google Scholar
  272. Sivappulaiah PV, Sridharan A, Stalin VK (2000) Hydraulic conductivity of bentonite-sand mixtures. Can Geotech J 37(2):712–722CrossRefGoogle Scholar
  273. Sivappulaiah PV, Prasad BG, Allam MM (2008) Methylene Blue surface area method to correlate with specific soil properties. Geotech Testing J 31(6):503–512Google Scholar
  274. Slichter CS (1898) Theoretical investigation of the motion of ground waters. US Geological Survey, 19th Annual Report, 2:295–384Google Scholar
  275. Sperry MS, Pierce JJ (1995) A model for estimating the hydraulic conductivity of granular material based on grain size, and porosity. Ground Water 33(6):892–898CrossRefGoogle Scholar
  276. Sridharan A, Nagaraj HB (2005) Hydraulic conductivity of remolded fine-grained soils versus index properties. Geotech Geol Eng 23:43–60CrossRefGoogle Scholar
  277. Sridharan A, Rao SM, Murphy NS (1986) Liquid limit of montmorillonite soils. Geotech Testing J 9(3):156–159CrossRefGoogle Scholar
  278. Sridharan A, Rao SM, Murphy NS (1988) Liquid limit of kaolinitic soils. Géotechnique 38(2):191–198CrossRefGoogle Scholar
  279. Stepkowska ET, Thorborg B, Wichman B (1995) Stress state-permeability relationships for dredged sludge and their dependence on microstructure. Géotechnique 45(2):307–316CrossRefGoogle Scholar
  280. Summers WK, Weber PA (1984) The relationship of grain-size distribution and hydraulic conductivity: an alternate approach. Ground Water 22(4):474–475CrossRefGoogle Scholar
  281. Sun Z, Logé RE, Bernacki M (2010) 3D finite element model of semi-solid permeability in an equiaxed granular structure. Comput Mater Sci 49:158–170CrossRefGoogle Scholar
  282. Tan SA (1989) A simple automatic falling head permeameter. Soils Found 29(1):161–164CrossRefGoogle Scholar
  283. Tanaka H (2000) Sample quality of cohesive soils: lessons from three sites, Ariake, Bothkennar and Drammen. Soils Found 40(4):57–74CrossRefGoogle Scholar
  284. Tanaka H, Locat J, Shibuya S, Tan TS, Shiwakoti DR (2001) Characterization of Singapore, Bangkok and Ariake clays. Can Geotech J 38:378–400CrossRefGoogle Scholar
  285. Tanaka H, Shiwakoti DR, Omukai N, Rito F, Locat J, Tanak M (2003) Pore size distribution of clayey soils measured by mercury intrusion porosimetry and its relation to hydraulic conductivity. Soils Found 43(6):63–73CrossRefGoogle Scholar
  286. Tavenas F, Jean P, Leblond P, Leroueil S (1983a) The permeability of natural soft clays. Part I: methods of laboratory measurement. Can Geotech J 20(4):629–644CrossRefGoogle Scholar
  287. Tavenas F, Jean P, Leblond P, Leroueil S (1983b) The permeability of natural soft clays. Part II: permeability characteristics. Can Geotech J 20(4):645–660CrossRefGoogle Scholar
  288. Tavenas F, Jean P, Leblond P, Leroueil S (1984) The permeability of natural soft clays. Part II: permeability characteristics: reply. Can Geotech J 21:731–732CrossRefGoogle Scholar
  289. Taylor DW (1948) Fundamentals of soil mechanics. John Wiley & Sons, New YorkGoogle Scholar
  290. Terzaghi K (1922a) Erdbaumechanik auf Bodenphysicalisher Grundlagen. Franz Deuticke, Leipzig and WienGoogle Scholar
  291. Terzaghi K (1922b) Soil failure at barrages and its prevention (in German). Die Wasserkraft, Special Forchheimer Issue, p 445Google Scholar
  292. Terzaghi C (1925) Principles of soil mechanics: III. Determination of permeability of clay. Engineering News Records, 95(21):832–836Google Scholar
  293. Terzaghi KT (1943) Theoretical Soil Mechanics. Wiley, New YorkCrossRefGoogle Scholar
  294. Tickell FG, Hiatt WN (1938) Effects of the angularity of grain on porosity and permeability of unconsolidated sands. Bull Am Ass Petrol Geol 22(9):1272–1274Google Scholar
  295. Tokunaga TK (1988) Laboratory permeability errors from annular wall flow. Soil Sci Soc Am J 52(1):24–27CrossRefGoogle Scholar
  296. Trani LDO, Indraratna B (2010) The use of particle size distribution by surface area method in predicting the saturated hydraulic conductivity of graded granular soils. Géotechnique 60(12):957–962CrossRefGoogle Scholar
  297. Uma KO, Egboka BCE, Onuoha KM (1989) New statistical grain-size method for evaluating the hydraulic conductivity of sandy aquifers. J Hydrol 108:343–366CrossRefGoogle Scholar
  298. Vaid YP, Sivathalayan S (2000) Fundamental factors affecting liquefaction susceptibility of sand. Can Geotech J 37(3):592–606CrossRefGoogle Scholar
  299. Valdes-Pareda FJ, Ochoa-Tapia JA, Alvarez-Amirez JA (2009) Validity of the permeability Carman-Kozeny equation: a volume averaging approach. Phys A 388:789–798CrossRefGoogle Scholar
  300. van Genuchten MT (1980) A closed-for equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898CrossRefGoogle Scholar
  301. Vereecken H, Maes J, Feyen J (1990) Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci 149:1–12CrossRefGoogle Scholar
  302. Vidal D, Ridgway C, Piant G, Schoelkopf J, Roy R, Bertrand F (2009) Effect of particle size distribution and packing compression on fluid permeability as predicted by lattice-Boltzmann simulations. Comp Chem Eng 33:256–266CrossRefGoogle Scholar
  303. Vienken T, Dietrich P (2011) Field evaluation of methods for determining hydraulic conductivity from grain size data. J Hydrol 400:58–71CrossRefGoogle Scholar
  304. Vogel HJ, Roth K (1988) A new approach for determining effective soil hydraulic functions. European J of Soil Sci 49(4):546–547Google Scholar
  305. Vuković M, Soro A (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, COGoogle Scholar
  306. Wadell H (1933) Sphericity and roundness of rock particles. J Geol 41:310–331CrossRefGoogle Scholar
  307. Wadell H (1935) Volume, Shape and Roundness of Quartz Particles. J Geol 43:250–280. doi: 10.1086/624298 CrossRefGoogle Scholar
  308. Walder J, Nur A (1984) Porosity reduction and crustal pore pressure development. J Geophys Res 89:11539–11548CrossRefGoogle Scholar
  309. Wiebenga WA, Ellis WR, Kevi L (1970) Empirical relations in properties of unconsolidated quartz sands and silts pertaining to water flow. Water Res Res 6:1154–1161CrossRefGoogle Scholar
  310. Windisch SJ, Soulié M (1970) Technique for study of granular materials. ASCE J Soil Mech Found Div 96(4):1113–1126Google Scholar
  311. Wosten JHM, van Genuchten MT (1988) Using texture and other soil properties to predict the unsaturated hydraulic functions. Soil Sci Soc Am J 52:1762–1770CrossRefGoogle Scholar
  312. Wyckoff RD, Botset HG (1936) The flow of gas-liquid mixtures through unconsolidated sands. Physics 7:325–345CrossRefGoogle Scholar
  313. Wyllie MRJ, Gardner GHF (1958a) The generalized Kozeny–Carman equation: part I. World Oil 146(4):121–126Google Scholar
  314. Wyllie MRJ, Gardner GHF (1958b) The generalized Kozeny–Carman equation: part II. World Oil 146(5):210–228Google Scholar
  315. Yang Y, Aplin AC (1998) Influence of lithology and compaction on the pore size distribution and modelled permeability of some mudstones from the Norwegian margin. Mar Pet Geol 15:163–175CrossRefGoogle Scholar
  316. Yang Y, Aplin AC (2007) Permeability and petrophysical properties of 30 natural mudstones. J Geophys Res 112 B03206 a. doi: 10.1029/2005JB004243round
  317. Yang Y, Aplin AC (2010) A permeability-porosity relationship for mudstones. Marine Petrol Geol 27:1692–1697CrossRefGoogle Scholar
  318. Yazdchi K, Srivastava S, Luding S (2011) Microstructural effects on the permeability of periodic fibrous porous media. Int J Multiph Flow. doi: 10.1016/j.ijmultiphaseflow.2011.05.003 Google Scholar
  319. Youd TL (1973) Factors controlling maximum and minimum densities of sands. In: Selig ET, Ladd RS (eds), ASTM STP523, pp 98–112Google Scholar
  320. Yu AB, Standish N (1987) Porosity calculation of multi-component mixtures of particles. Powder Tech 52:1–12CrossRefGoogle Scholar
  321. Yukselen-Aksoy Y, Kaya A (2006) Comparison of methods for determining specific surface area of soils. J Geotech Geoenv Eng 132:931–936CrossRefGoogle Scholar
  322. Yukselen-Aksoy Y, Kaya A (2010) Method dependency of relationships between specific surface area and physicochemical properties. Appl Clay Sci 50(2):182–190CrossRefGoogle Scholar
  323. Zeng LL, Hong ZS, Cai YQ, Han J (2011) Change of hydraulic conductivity during compression of undisturbed and remolded clay. Appl Clay Sci 51:86–93CrossRefGoogle Scholar
  324. Zunker F (1932) Zeitschrift fur Pflanzeneraehrung. Duengung und Bodenkunde A25:1Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department CGMÉcole Polytechnique de MontréalMontrealCanada

Personalised recommendations