Estimating slope failure potential in an earthquake prone area: a case study at Skolis Mountain, NW Peloponnesus, Greece

Original Paper


One of the most important issues in the evaluation of geological hazards is the delineation of landslide prone areas and the estimation of the slope failure potential. In this study, the GIS-based Newmark’s displacement method was applied for the first time in Greece, in order to compute the permanent displacement values and evaluate the slope failure potential in the area of the Skolis mountain in NW Peloponnesus, Greece. The resulting maps were validated using the distribution of secondary effects triggered by the 8 June 2008 earthquake. The study indicated that as the source areas of the rock falls were delineated by the Newmark displacement method, this may be a useful approach to predict earthquake-induced slope failures when the seismic potential of an area has been previously evaluated.


Rock fall Hazard Earthquake Greece Peloponnesus 


Un des thèmes les plus importants dans l’évaluation des aléas géologiques est la délimitation des zones sujettes à glissements de terrain et l’estimation des risques de rupture de terrain. Dans cette étude, la méthode de Newmark, sur une base SIG, a été appliquée pour la première fois en Grèce, afin de calculer des valeurs de déplacement permanent et d’évaluer le risque de rupture de pente dans la région des montagnes de Skolis dans le nord-ouest du Péloponnèse (Grèce). Les cartes produites ont été validées à partir de la répartition des effets secondaires déclenchés par le séisme du 8 juin 2008. L’étude a montré que, la zone source de chutes de blocs étant délimitée par la méthode des déplacements de Newmark, cette approche peut être utile pour prévoir les glissements déclenchés par des séismes lorsque l’activité sismique d’une région a été au préalable évaluée.

Mots clés

Chute de bloc Aléa Séisme Grèce Péloponnèse 



The author of this study would like to thank Prof. Spyros Pavlides, Dr. Alexandros Chatzipetros and Dr. Sotiris Valkaniotis for their help during the field survey and the recording of the ground failures triggered by the June 8, 2008 earthquake.


  1. Abrahamson NA, Silva WJ (1997) Empirical response spectral attenuation relations for shallow crustal earthquakes. Seism Res Lett 68:94–109CrossRefGoogle Scholar
  2. Ambraseys NN, Menu JM (1988) Earthquake-induced ground displacements. Earthq Eng Struct Dyn 16:985–1006CrossRefGoogle Scholar
  3. Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Int J Earthq Eng Struct Dyn 25:371–400CrossRefGoogle Scholar
  4. Boore DM, Joyner WB, Fumal TE (1993) Estimation of response spectra and peak acceleration for Western North America earthquakes: an internal report. Open-File Report 93–509. US Geological Survey, Menlo ParkGoogle Scholar
  5. Ganas A, Seprelloni E, Drakatos G, Kolligri M, Adamis I, Tsimi Ch, Batsi E (2009) The Mw 6.4 SW-Achaia (Western Greece) earthquake of 8 June 2008: seismological, field, GPS observations and stress modelling. J Earthq Eng 13(8):1101–1124CrossRefGoogle Scholar
  6. Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark’s sliding block analysis. Transp Res Rec 1411:9–17Google Scholar
  7. Jibson RE (2007) Regression models for estimating coseismic landslide displacement. Eng Geol 91:209–218CrossRefGoogle Scholar
  8. Jibson RW, Keefer DK (1993) Analysis of the seismic origin of landslides: examples from the New Madrid Seismic Zone. Geol Soc Am Bull 105(4):521–536CrossRefGoogle Scholar
  9. Jibson RE, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard maps: an example from the Los Angeles, California area. USGS open-file report, pp 98–113Google Scholar
  10. Jibson RE, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289CrossRefGoogle Scholar
  11. Keefer D (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  12. Keefer DK, Wilson RC (1989) Predicting earthquake-induced landslides, with emphasis on arid and semi-arid environments. In: Landslides in a semi-arid environment. Inland Geological Survey Society, vol 2, pp 118–149Google Scholar
  13. Khazai B, Sitar N (2000) Landsliding in native ground: a GIS-based approach to regional seismic slope stability assessment, report.
  14. Lee WHK, Kanamori H, Jennings CP, Kisslinger C (2003) International handbook of earthquake and engineering seismology. Part B. IASPE, Academic Press, Menlo Park, p 1032Google Scholar
  15. Lin ML, Kao JJ (2005) The threshold displacement of landslides caused by Chi-Chi earthquake. In: International symposium on the potential, risk, and prediction of earthquake-induced landslides, Taipei, TaiwanGoogle Scholar
  16. Margaris BN, Papazachos CB, Papaioanou Ch, Theodoulidis N, Kalogeras I, Skarlatoudis AA (2002) Empirical attenuation relations for the horizontal strong ground motion parameters of shallow earthquakes in Greece. In: 12th European conference on earthquake engineering, 9–13 September, LondonGoogle Scholar
  17. Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthq Eng 18(4):305–323CrossRefGoogle Scholar
  18. Miles SB, Keefer DK (2000) Evaluation of seismic slope performance models using a regional case study. Environ Eng Geosci 6(1):25–39Google Scholar
  19. Miles SB, Keefer DK (2009) Evaluation of CAMEL––Comprehensive Areal Model of Earthquake‐induced Landslides. Eng Geol 104:1–15CrossRefGoogle Scholar
  20. Newmark NM (1965) Effects of earthquake on dams and embankments. Geotechnique 15(2):139–160CrossRefGoogle Scholar
  21. Rozos D (1991) Engineering geological conditions in Achaia province, geomechanical characteristics of the Plio-Pleistocene sediments. Institute of Geology and Mineral Exploration, Athens, p 421Google Scholar
  22. Skarlatoudis AA, Papazachos CB, Margaris BN, Theodulidis N, Papaioannou Ch, Kalogeras I, Scordilis EM, Karakostas V (2003) Empirical peak ground-motion predictive relations for shallow earthquakes in Greece. Bull Seism Soc Am 93(6):2591–2603CrossRefGoogle Scholar
  23. Wang KL, Lin ML (2009) Development of shallow seismic landslide potential map based on Newark’s displacement: the case study of Chi-Chi earthquake, Taiwan. Env Earth Sci. doi: 10.1007/s12665-009-0215-1
  24. Wieczorek GF, Wilson RC, Harp EL (1985) Map showing slope stability during earthquakes in San Mateo County, California. Miscellaneous investigations Map I-1257-E, USGSGoogle Scholar
  25. Wilson RC, Keefer DK (1983) Dynamic analysis of a slope failure from the 6 August, 1979 Coyote Lake California earthquake. Bull Seism Soc Am 73(3):863–877Google Scholar
  26. Wilson RC, Keefer DK (1985) Predicting areal limits of earthquake induced landsliding in evaluating the earthquake hazard in the Los Angeles region—an earth science perspective. Professional paper 1360, USGS, pp 316–345Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of GeologyAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations