Evaluation of the long-term durability of yellow travertine using accelerated weathering tests

Original Paper

Abstract

The study investigated the long-term performance/durability of yellow travertine against various environmental processes using several accelerated weathering tests: wet–dry, freeze–thaw and salt crystallization. Prior to the accelerated weathering tests, the specimens were separated into two groups based on their porosities. The re-crystallization pressure of Na2SO4 salt was found to be the most destructive factor in the deterioration of the yellow travertine, with a maximum of 50% loss of integrity recorded. The recurrent cycles of wetting–drying and freezing–thawing caused relatively minor damage. After the experimental studies, the disintegration rate was statistically evaluated using the alteration index–alteration velocity and the decay function approaches. Both statistical models confirmed that the rate of disintegration was higher with salt re-crystallization pressures in the less porous yellow travertines compared with that resulting from wet–dry and freeze–thaw cycles.

Keywords

Travertine Accelerated weathering test Salt crystallization Disintegration Deterioration Building stone 

Résumé

L’étude s’est intéressée aux performances à long terme et la durabilité de travertins jaunes soumis à différentes sollicitations d’altération météorique simulées par des essais accélérés : humidification-séchage, gel-dégel et cristallisation de sels. Avant la réalisation de ces tests accélérés, les échantillons ont été répartis en deux groupes en fonction de leurs porosités. Le développement de pressions de recristallisation de sel de Na2SO4 s’est avéré être le processus le plus destructeur pour les travertins jaunes, avec jusqu’à 50% de perte d’intégrité enregistrée. Les cycles successifs d’humidification-séchage et de gel-dégel ont causé des dommages relativement faibles. Après les études expérimentales, le taux de désintégration a été statistiquement évalué en s’appuyant sur les mesures d’indice d’altération et de vitesse d’altération ainsi que sur une fonction de décomposition du matériau. Ces deux modèles statistiques ont confirmé que, pour les travertins jaunes les moins poreux, le taux de désintégration était plus élevé en cas de développement de pressions de recristallisation de sel, comparé au cas des cycles d’humidification-séchage et de gel-dégel.

Mots clés

Travertin Test d’altération météorique accéléré Cristallisation de sels Désintégration Détérioration Pierres de construction 

References

  1. Akin M (2008) Investigation of deterioration of Eskipazar (Karabuk) travertines. PhD thesis, Ankara University, Graduate School of Natural and Applied Sciences, Ankara, Turkey (in Turkish, unpublished)Google Scholar
  2. Akin M (2010) A quantitative weathering classification system for yellow travertines. Environ Earth Sci. doi:10.1007/s12665-009-0319-7 (in press)
  3. Altındağ R, Ayyıldız IS, Onargan T (2004) Mechanical property degradation of ignimbrite subjected to recurrent freeze-thaw cycles. Int J Rock Mech Min Sci 41:1023–1028CrossRefGoogle Scholar
  4. Angeli M, Bigas JP, Menendez B, Hebert R, David C (2006) Influence of capillary properties and evaporation on salt weathering of sedimentary rocks. Heritage weathering and conservation. Taylor&Francis/Balkema, Leiden, pp 253–259Google Scholar
  5. Angeli M, Bigas JP, Benavente D, Menendez B, Hebert R, David C (2007) Salt crystallization in pores: quantification and estimation of damage. Environ Geol 52:187–195CrossRefGoogle Scholar
  6. ASTM (1992) Standard test method for evaluation of durability of rock for erosion control under wetting and drying conditions, D5313. Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshocken, PA, pp 1347–1348Google Scholar
  7. Bell FG (1993) Engineering geology. Blackwell, Oxford, pp 1–359Google Scholar
  8. Benavente D, Garcı′a del Cura MA, Fort R, Ordonez S (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74:113–127CrossRefGoogle Scholar
  9. Benavente D, Cueto J, Martinez N, Garcı′a del Cura MA, Canaveras JC (2007) The influence of petrophysical properties on the salt weathering of porous building rocks. Environ Geol 52:197–206CrossRefGoogle Scholar
  10. Binal A, Kasapoğlu KE, Gökçeoğlu C (1997) The surficial physical deterioration behaviour of Neogene volcano-sedimentary rocks of Eskişehir-Yazılıkaya, NW Turkey. In: Proceedings of the international symposium on engineering geology and environment, vol 3. Athens, Greece. A.A. Balkema, Rotterdam, pp 3065–3069Google Scholar
  11. Blows JF, Carey PJ, Poole AB (2003) Preliminary investigations into Caen Stone in the UK; its use, weathering and comparison with repair stone. Build Environ 38:1143–1149CrossRefGoogle Scholar
  12. Cooke RU (1994) Salt weathering and the urban water table in deserts. In: Robinson DA, Williams RBG (eds) Rock weathering and landform evolution, chap 12, pp 193–205Google Scholar
  13. Flatt RJ (2002) Salt damage in porous materials: how high supersaturations are generated. J Cryst Growth 242:435–454CrossRefGoogle Scholar
  14. ISRM (1981) Rock characterization, testing and monitoring. In: Brown ET (ed) International society of rock mechanics suggested methods. Pergamon Press, Oxford, pp 1–211Google Scholar
  15. Jefferson DP (1993) Building stone: the geological dimension. Q J Eng Geol 26:305–319CrossRefGoogle Scholar
  16. Mahmutoğlu Y, Yüzer E, Suner F, Eriş I, Eyüboğlu R (2003) Deterioration and conservation of the Dolmabahçe Palace (Istanbul) building stones. In: Yuzer E, Ergin H, Tugrul A (eds) Proceedings of industrial minerals and building stones, IMBS 2003, pp 343–352Google Scholar
  17. Martin L, Bello MA, Martin A (1992) Accelerated alteration tests on the stones used in the cathedral of Granada (Spain). In: Delgado RJ, Henriques F, Telmo JF (eds) Proceedings of 7th international congress on deterioration and conservation of stone, Lisboa, Portugal, vol 2, pp 845–850Google Scholar
  18. Mutlutürk M, Altındağ R, Türk G (2004) A decay function model for the integrity loss of rock when subjected to recurrent cycles of freezing–thawing and heating–cooling. Int J Rock Mech Min Sci 41:237–244CrossRefGoogle Scholar
  19. Ondrasina J, Kirchner D, Siegesmund S (2002) Freeze–thaw cycles and their influence on marble deterioration: a long term experiment. In: Siegesmund S, Weiss T, Vollbrecht A (eds) Natural stone, weathering phenomena, conservation strategies and case studies. Geological Society, London, Special Publications, vol 205, pp 9–18Google Scholar
  20. Papida S, Murphy W, May E (2000) Enhancement of physical weathering of building stones by microbial populations. Int Biodeterior Biodegradation 46:305–317CrossRefGoogle Scholar
  21. Park HD, Kim SS, Chon HT (1998) Durability of ornamental stone exposed to various weathering environments in Korea. In: Moore DP, Hungr O (eds) Proceedings of 8th international congress of IAEG, vol 4, Balkema, Vancouver, pp 2953–2955Google Scholar
  22. Pentecost A (2005) Travertine. Springer, Berlin, pp 1–445Google Scholar
  23. Pitzurra L, Moroni B, Nocentini A, Sbaraglia G, Poli G, Bistoni F (2003) Microbial growth and air pollution in carbonate rock weathering. Int Biodeterior Biodegradation 52:63–68CrossRefGoogle Scholar
  24. Prikryl R (2001) Some microstructural aspects of strength variation in rocks. Int J Rock Mech Min Sci Geomech Abstr 38(5):671–682CrossRefGoogle Scholar
  25. Prikryl R, Lokajícek T, Svobodová J, Weishauptová Z (2003) Experimental weathering of marlstone from Prední Kopanina (Czech Republic)—historical building stone of Prague. Build Environ 38(9–10):1163–1171CrossRefGoogle Scholar
  26. RILEM (1980) Recommended tests to measure the deterioration of stone and to assess the effectiveness of treatment methods. Commission 25-PEM, material and structures, vol 13, pp 175–253Google Scholar
  27. Ruedrich J, Siegesmund S (2007) Salt and ice crystallization in porous sandstones. Environ Geol 52:343–367CrossRefGoogle Scholar
  28. Ruiz Agudo E, Mees F, Jacobs P, Rodriguez Navarro C (2007) The role of saline solution properties on porous limestone salt weathering by magnesium and sodium sulfates. Environ Geol 52:305–317CrossRefGoogle Scholar
  29. Schneider C, Ziesch J, Bauer J, Török A, Siegesmund S (2008) Bauwerkskartierung zur Analyse des Verwitterungszustands an den Außenmauern des Schlosses von Buda (Budapest, Ungarn). Schriftenreihe der Deutschen Geologischen Gesellschaft (SDGG) 59:219–235Google Scholar
  30. Sidraba I (2006) Weatherability of Roman travertine. PhD thesis, Riga Technical University Faculty of Material Science and Applied Chemistry Institute of Silicate Materials, Latvia (unpublished)Google Scholar
  31. Sidraba I, Normandin KC, Cultrone G, Scheffler MJ (2004) Climatological and regional weathering of Roman travertine. In: Prikryl R, Siegel P (eds) Architectural and sculptural stone in cultural landscape. Carolinum Press, Prague, pp 211–228Google Scholar
  32. Sousa LMO, Del Rio LMS, Calleja L, De Argandona VGR, Rey AR (2005) Influence of microfractures and porosity on the physico-mechanical properties and weathering of ornamental granites. Eng Geol 77:153–168CrossRefGoogle Scholar
  33. Steiger M (1996) Distribution of salt mixtures in a sandstone monument: sources, transport and crystallization properties. In: Zezza F (ed) EC research workshop on origin, mechanisms and effects of salts on degradation of monuments in marine and continental environments. European Commission, Protection and Conservation of the European Cultural Heritage, Research Report 4, Bari, pp 241–246Google Scholar
  34. Steiger M (2002) Salts and crusts. In: Brimblecombe P (ed) The effects of air pollution on the built environment. Air pollution reviews. Imperial College, LondonGoogle Scholar
  35. Steiger M (2005) Crystal growth in porous materials-I: the crystallization pressure of large crystals. J Cryst Growth 282:455–469CrossRefGoogle Scholar
  36. Steiger M, Zeunert A (1996) Crystallization properties of salt mixtures: comparison of experimental results and model calculations. In: Riederer J (ed) Proceedings of 8th int congress on deterioration and conservation of stone, Berlin, pp 535–544Google Scholar
  37. Topal T, Doyuran V (1998) Analyses of deterioration of the Cappadocian tuff, Turkey. Environ Geol 34(1):5–19CrossRefGoogle Scholar
  38. Topal T, Sözmen B (2003) Deterioration mechanisms of tuffs in Midas monument. Eng Geol 68:201–223CrossRefGoogle Scholar
  39. Török A (2004) Comparison of the processes of decay of two limestones in a polluted urban environment. In: Mitchell DJ, Searle DE (eds) Stone deterioration in polluted urban environments. Science Publishers, Enfield, pp 73–92Google Scholar
  40. Török A (2006) Hungarian travertine: weathering forms and durability. In: Fort R, Alvarez de Buego M, Gomez-Heras M, Vazquez-Calvo C (eds) Heritage weathering and conservation, vol I. Taylor & Francis/Balkema, London, pp 199–204Google Scholar
  41. Török A (2008) Black crusts on travertine: factors controlling development and stability. Environ Geol 56:583–584CrossRefGoogle Scholar
  42. TS699 (1987) Natural building stones, investigation and test methods. Turkish Standards Institute, Ankara, pp 1–82 (in Turkish)Google Scholar
  43. TSEN12371 (2002). Natural stones-testing methods-determination of frost resistance. Turkish Standards Institute, Ankara (in Turkish)Google Scholar
  44. Tuğrul A, Zarif İH (1999) Research on limestone decay in a polluting environment, İstanbul-Turkey. Environ Geol 38(2):149–158CrossRefGoogle Scholar
  45. Uchida E, Ogawa Y, Maeda N, Nakagawa T (1999) Deterioration of stone materials in the Angkor monuments, Cambodia. Eng Geol 55:101–112CrossRefGoogle Scholar
  46. Van TT, Beck K, Al-Mukhtar M (2007) Accelerated weathering tests on two highly porous limestones. Environ Geol 52:411–420CrossRefGoogle Scholar
  47. Yavuz AB, Topal T (2007) Thermal and salt crystallization effects on marble deterioration: examples from Western Anatolia, Turkey. Eng Geol 90:30–40CrossRefGoogle Scholar
  48. Yavuz H, Altındağ R, Saraç S, Uğur I, Şengün N (2006) Estimating the index properties of deteriorated carbonate rocks due to freeze–thaw and thermal shock weathering. Int J Rock Mech Min Sci 43:767–775CrossRefGoogle Scholar
  49. Yüzer E, Angı S (2005) Natural stone sector in Turkey special attention to Turkish travertines. In: Özkul M, Yağız S, Jones B (eds) Proceedings of 1st international symposium on travertine, Denizli, Turkey, pp 3–13Google Scholar
  50. Zappia G, Sabbioni C, Riontino C, Gobbi G, Favoni O (1998) Exposure tests of building materials in urban atmosphere. Sci Total Environ 224:235–244CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Geotechnical InvestigationGeneral Directorate of Bank of ProvincesAnkaraTurkey
  2. 2.Department of Geological Engineering, Faculty of EngineeringAnkara UniversityAnkaraTurkey

Personalised recommendations