An alternative rock mass classification system for rock slopes

  • Lysandros PantelidisEmail author
Original Paper


A system for the quantification of the failure hazard of rock cuttings structured in the form of rating tables is proposed. Rock cuttings are classified according to their failure hazard taking into account both their drained condition and the influence that climatic conditions have on stability; the latter being the most common landslide-triggering factor. The system deals with seven types of failure including slides, topples and falls. Where possible and convenient, parameters are amalgamated using well-established expressions of safety factor increasing the objectivity of the system. In addition to triggering mechanisms, site-specific parameters related to the mean and critical precipitation height, as well as the potential for the development of adverse, water-related conditions are taken into account to arrive at a Hazard Index value.


Rock mass rating Rock falls RMR SMR Rock cutting failure Quantitative risk assessment 


Un système sur la quantification du risque d’échec des déblais rocheux structuré sous la forme des tableaux d’évaluation est proposé. Les déblais rocheux sont classifiés selon leur risque d’échec prenant en compte leur condition asséchée et l’influence des conditions climatiques sur la stabilité; le dernier facteur déclenchement des glissements de terrain est le plus commun. Le système traite avec sept types d’échec, glissements, renversements et éboulements rocheux sont compris. Lorsque cela est possible et pratique, les paramètres sont fusionnés en utilisant des expressions du facteur de sécurité connues, qui accroissent l’objectivité du système. En outre des mécanismes de déclenchement, les paramètres relatifs à la moyenne et à la hauteur critique de la précipitation du site spécifique, ainsi que la possibilité du développement des conditions négatives et relatives à l’eau, sont prises en considération pour arriver au Valeur du Risque.

Mots clés

Classification du massif rocheux Eboulements rocheux RMR, SMR, Echec des déblais rocheux Evaluation quantitative de risque 


  1. Anagnostopoulos C, Georgiadis M (1997) Analysis of rainfall data and correlation to landslides: the case of Sykia-Pieria, Greece. In: Proceedings of the International Symposium of the IAEG on engineering geology and the environment 1:483–487Google Scholar
  2. Ayalew L (1999) The effect of seasonal rainfall on landslides in the highlands of Ethiopia. Bull Eng Geol Environ 58:9–19. doi: 10.1007/s100640050065 CrossRefGoogle Scholar
  3. Barton NR, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech Rock Eng 6(4):189–239. doi: 10.1007/BF01239496 Google Scholar
  4. Bieniawski ZT (1979) The geomechanics classification in rock engineering applications. In: Proceedings of 4th international congress for rock mechanics, ISRM 2:41–48Google Scholar
  5. Brown ET (1981) Rock characterization, testing and monitoring, ISRM suggested methods. Pergamon Press, OxfordGoogle Scholar
  6. Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2006) Rainfall induced landslides in December 2004 in South-Western Umbria, Central Italy. Nat Hazards Earth Syst Sci 6:237–260Google Scholar
  7. Chau KT, Wong RHC, Liu J, Lee CF (2003) Rockfall hazard analysis for Hong Kong based on rockfall inventory. Rock Mech Rock Eng 36(5):383–408. doi: 10.1007/s00603-002-0035-z CrossRefGoogle Scholar
  8. Chleborad AF, Baum RL, Godt JW (2006) Rainfall thresholds for forecasting landslides in the Seattle, Washington, area—exceedance and probability. US Geological Survey Open-File Report 2006–1064 (available from:
  9. Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landf 24:825–833CrossRefGoogle Scholar
  10. Flageollet JC, Maquaire O, Martin B, Weber D (1999) Landslides and climatic conditions in the Barcelonnette and Vars Basins (Southern French Alps, France). Geomorphology 30:65–78. doi: 10.1016/S0169-555X(99)00045-8 CrossRefGoogle Scholar
  11. Frayssines M, Hantz D (2006) Failure mechanisms and triggering factors in calcareous cliffs of the Subalpine Ranges (French Alps). Eng Geol 86:256–270. doi: 10.1016/j.enggeo.2006.05.009 CrossRefGoogle Scholar
  12. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New YorkGoogle Scholar
  13. Goodman RE, Bray JW (1977) Toppling of rock slopes. In: Proceedings of a Specialty Conference on rock engineering for foundations and slopes 2:201–234Google Scholar
  14. Guzzetti F, Reichenbach P, Cardinali M, Ardizzone F, Galli M (2003a) The impact of landslides in the Umbria Region, Central Italy. Nat Hazards Earth Syst Sci 3(5):469–486Google Scholar
  15. Guzzetti F, Reichenbach P, Wieczorek GF (2003b) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3(6):491–503CrossRefGoogle Scholar
  16. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorol Atmos Phys 98:239–267. doi: 10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  17. Hack HRGK (1996) Slope stability probability classification (SSPC). ITC Publication, Netherlands ISBN 90 6164 125 X. 258 pp (thesis, book, online)Google Scholar
  18. Hoek E (2007) Practical rock engineering. Internet site: Hoek’s corner (available from:
  19. Hoek E, Bray JW (1981) Rock slope engineering, 3rd edn. Institution of Mining and Metallurgy, LondonGoogle Scholar
  20. IUGS (1997) Quantitative risk assessment for slopes and landslides—the state of the art. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 3–12Google Scholar
  21. Komac M (2005) Intenzivne padavine kot sprožilni dejavnik pri pojavljanju plazov v Sloveniji (Rainstorms as a landslide-triggering factor in Slovenia). Geologija 48(2):263–279Google Scholar
  22. Koukis G, Ziourkas C (1991) Slope instability phenomena in Greece—a statistical analysis. Bul Int Assoc Eng Geol 43:47–60. doi: 10.1007/BF02590170 CrossRefGoogle Scholar
  23. Koukis G, Tsiambaos G, Sabatakis N (1997) Landslide movements in Greece: Engineering geological characteristics and environmental consequences. In: Proceedings of the International Symposium on engineering geology and the environment 1:789–792Google Scholar
  24. Koukis G, Sabatakakis N, Nikolaou N, Loupasakis K (2005) Landslide Hazard Zonation in Greece. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides, risk analysis and sustainable disaster management. Springer, Berlin, pp 291–296. doi: 10.1007/3-540-28680-2 Google Scholar
  25. Marinos P, Hoek E (2000) GSI: A geologically friendly tool for rock mass strength estimation. In: Proceedings of the International Conference on geotechnical and geological engineering (GeoEng2000), pp 1422–1442Google Scholar
  26. Marinos P, Hoek E (2001) Estimating the geotechnical properties of heterogeneous rock masses such as flysch. Bull Eng Geol Environ (IAEG) 60:85–92. doi: 10.1007/s100640000090 CrossRefGoogle Scholar
  27. Marinos V, Marinos P, Hoek E (2005) The Geological Strength Index: applications and limitations. Bull Eng Geol Environ 64:55–65. doi: 10.1007/s10064-004-0270-5 CrossRefGoogle Scholar
  28. Maurenbrecher PM, Hack HRGK (2007) Toppling mechanism: resolving the question of alignment of slope and discontinuities. In: Proceedings of the 11th Congress of the ISRM. The second half century of rock mechanics 1:725–728Google Scholar
  29. McCauley ML, Works BW, Naramore SA (1985) Rockfall mitigation—final report (FHWA/CA/TL-85/12). FHWA, WashingtonGoogle Scholar
  30. Mouratidis A, Pantelidis L (2007) Rock failure risk assessment in highway maintenance management. In: Proceedings of the International Conference on advanced characterisation of pavement and soil engineering materials 2:1145–1154Google Scholar
  31. Palmström A (1995) RMi—a rock mass characterization system for rock engineering purposes. PhD thesis, University of Oslo, Norway p 409Google Scholar
  32. Palmström A (2001) Measurement and characterization of rock mass jointing. In: Sharma VM, Saxena KR (eds) In situ characterization of rocks. Balkema, Tokyo, pp 49–97Google Scholar
  33. Pantelidis L (2009) Rock slope stability assessment through rock mass classification systems. Int J Rock Mech Min Sci 46(2):315–325. doi: 10.1016/j.ijrmms.2008.06.003 CrossRefGoogle Scholar
  34. Rapp A (1960) Recent developments of mountain slopes in Kärkevagge and surroundings, northern Scandanavia. Geografiska Annaler 42(A):71–200Google Scholar
  35. Trigo RM, Zêzere JL, Rodrigues ML, Trigo IF (2005) The influence of the North Atlantic Oscillation on rainfall triggering of landslides near Lisbon. Nat Hazards 36:331–354. doi: 10.1007/s11069-005-1709-0 CrossRefGoogle Scholar
  36. Varnes DJ (1978) Slope movement types and processes. TRB 176:11–33Google Scholar
  37. Wieczorek GF, Jäger S (1996) Triggering mechanisms and depositional rates of postglacial slope-movement processes in the Yosemite Valley, California. Geomorphology 15:17–31. doi: 10.1016/0169-555X(95)00112-I CrossRefGoogle Scholar
  38. Wieczorek GF, Snyder JB, Alger CS, Isaacson KA (1992) Rock falls in Yosemite Valley, California. US Geological Survey, Open-File Report, pp 92–387Google Scholar
  39. Wyllie DC (1999) Foundation on rock, 2nd edn. Taylor and Francis, LondonGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Civil EngineeringAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations