Property attribution of 3D geological models in the Thames Gateway, London: new ways of visualising geoscientific information

Original Paper

Abstract

Rapid developments in information technology and the increasing collection and digitisation of geological data by the British Geological Survey now allow geoscientists to produce meaningful 3D spatial models of the shallow subsurface in many urban areas. Using this new technology, it is possible to model and predict not only the type of rocks in the shallow subsurface, but also their engineering properties (rock strength, shrink-swell characteristics and compressibility) and hydrogeological properties (permeability, porosity, thickness of the unsaturated zone or the likelihood of perched water tables) by attribution of the 3D model with geological property data. This paper describes the hydrogeological, engineering and confidence (uncertainty) attribution of high resolution models of the Thames Gateway development zone (TGDZ), east of London, UK, and proposes a future in which site investigation sets out to test a pre-existing spatial model based on real data rather than a conceptual model.

Keywords

3D modelling Decision making Site Investigation attribution 

Résumé

Les développements rapides dans les technologies de l’information et les acquisitions croissantes de données géologiques numérisées par le British Geological Survey permettent maintenant aux géoscientifiques de produire des modèles 3D précis et géo-référencés du sous-sol peu profond pour de nombreuses régions urbanisées. Avec ces nouvelles technologies il est possible de représenter non seulement le type de formation géologique du sous-sol mais aussi de donner leurs propriétés géotechniques (résistance, caractéristiques de retrait-gonflement et compressibilité) ainsi que leurs propriétés hydrogéologiques (perméabilité, porosité, épaisseur de la zone non saturée, présence de nappes perchées). L’article décrit les affectations de paramètres hydrogéologiques et géotechniques ainsi que leurs intervalles de confiance pour un modèle de haute précision concernant la Thames Gateway development zone (TGDZ), à l’est de Londres au Royaume-Uni et propose des travaux futurs de reconnaissance du sol destinés à tester un modèle géo-référencé préexistant basé sur des données réelles plutôt qu’un modèle conceptuel.

Mots clés

Modélisation 3D Prise de décision Reconnaissances de terrain 

Notes

Acknowledgments

This paper is published with the permission of the Executive Director of the British Geological Survey (NERC)

References

  1. Anon (1999) Code of practice for site investigation, BS5930. British Standard Institution, London, p 204Google Scholar
  2. Anon (2004) Geotechnical investigation and testing—identification and classification of soil—Part 2: Principles for a classification (CEN ISO 14688-2:2004). British Standard Institution, LondonGoogle Scholar
  3. Baker GR, Giles J (2000) BGS Geoscience integrated database system: a repository for corporate data. In: Earthwise, vol 16. pp 12–13Google Scholar
  4. Barclay WJ, Ellison RA, Northmore KJ (1990) A geological basis for land-use planning: Garforth-Castleford-Pontefract: 1:10 000 sheets SE42NW,NE, SW, SE, SE43SW and SE52SW, parts of 1:50 000 geological sheets 70 (Leeds) and 78 (Wakefield): British Geological Survey, Technical Report WA/90/3. p 111Google Scholar
  5. Berry FG (1979) Late Quaternary scour hollows and related features in central London. Q J Eng Geol 12:9–29CrossRefGoogle Scholar
  6. Bobrowsky PT (2002) Geoenvironmental mapping: methods, theory and practice. AA Balkema, LisseGoogle Scholar
  7. Bowie R (2005) Creating a digital landslide. Geoscientist 15(3):4–7Google Scholar
  8. Bradshaw J, Caiger N, Halpin M, Le Gear R, Pearce A, Pearman H, Reeve T, Sowan P (1991) Kent and East Sussex Underground. Meresborough Books. p 128Google Scholar
  9. Bristow R, Mortimore RN, Wood CJ (1997) Lithostratigraphy for mapping the Chalk of southern England. Proc Geol Assoc 109:293–315CrossRefGoogle Scholar
  10. Cave MR, Wood B (2003) Approaches to the measurement of uncertainty in geoscience data modelling: British Geological Survey Internal Report, IR/02/068. p 38Google Scholar
  11. Chernick MR (1999) Bootstrap Methods, A practitioner’s guide. Wiley Series in Probability and StatisticsGoogle Scholar
  12. Clarke SM (2004) Confidence in geological interpretation. A methodology for evaluating uncertainty in common two and three-dimensional representations of subsurface geology. British Geological Survey Internal Report, IR/04/164. p 29Google Scholar
  13. Communities and Local Government (2006a) Planning Policy Statement 25: Development and Flood Risk. Full regulatory Impact Assessment. Communities and Local Government Publications. p 26Google Scholar
  14. Communities and Local Government (2006b) Planning Policy Statement 9: Biodiversity and geological conservation. Final Regulatory Impact Assessment. DCLG publications. p 10Google Scholar
  15. Culshaw MG (2003) Bridging the gap between geoscience providers and the user community. In: Rosenbaum MS, Turner AK (eds) New paradigms in subsurface prediction, Lecture notes in earth sciences 99. Springer, Berlin, pp 7–26Google Scholar
  16. Culshaw MG (2005) From concept towards reality: developing the attributed 3D model of the shallow subsurface. Q J Eng Geol Hydrogeol 38:231–284CrossRefGoogle Scholar
  17. Culshaw MG, Ellison RA (2002) Geological maps: their importance in a user-driven digital age. In: Van Roony JL, Jermy CA (eds) Proceedings of the 9th International Association for Engineering Geology and the Environment Congress, Durban, 16–20 September 2002. Keynote Lectures and Extended Abstracts Volume, 25–51. Pretoria: South African Institute of Engineering and Environmental Geologists [ISBN 0-620-28560-5]. Also pages 67–92 on CD Rom [ISBN 0-620-28559-1]Google Scholar
  18. Ellison RA, Arrick A, Strange PJ, Hennessey C (1998) Earth science information in support of major development initiatives. British Geological Survey Technical Report, WA/97/84Google Scholar
  19. Ellison RA, McMillan AA, Lott GK (2002) Ground characterization of the urban environment: a guide to best practice. British Geological Survey Internal Report, IR/02/044Google Scholar
  20. Ellison RA, Woods MA, Allen DJ, Forster A, Pharaoh TC, King C (2004) Geology of London. Memoir of the British Geological Survey, Sheets 256 (North London), 257 (Romford), 270 (South London) and 271 (Dartford) (England and Wales), p 114Google Scholar
  21. Environment Agency (1990) Rising groundwater levels in the Chalk-basal sands aquifer of the Central London basin—1990. Unpublished reportGoogle Scholar
  22. Environment Agency (2004) Rising groundwater levels in the Chalk-basal sands aquifer of the Central London basin—May 2004. Unpublished reportGoogle Scholar
  23. Evans R (2003) Current themes, issues and challenges concerning the prediction of subsurface conditions. In: Rosenbaum MS, Turner AK (eds) New paradigms in subsurface prediction: characterisation of the shallow subsurface: implications for urban infrastructure and environmental assessment. Springer, Düsseldorf, pp 359–378Google Scholar
  24. Farrant AR (2001) Karst development in southern English Chalk. In: Beck BF and Herring JG (eds) Geotechnical and environmental applications of karst geology and hydrology. Swets and Zeitlinger, pp 77–82Google Scholar
  25. Fookes PG (1997) Geology for engineers: the geological model, prediction and performance. Q J Eng Geol 30:293–424CrossRefGoogle Scholar
  26. Fookes PG, Baynes FG, Hutchinson JN (2000) Total geological history: a model approach to the anticipation, observation and understanding of site conditions. In: Proceedings of the International Conference on Geotechnical and Geological Engineering, Melbourne, Australia, 1. Technomic publishing Co, Lancaster, Pennsylvania, USA. pp 370–460Google Scholar
  27. Forster A, Arrick M, Culshaw M G, Johnston M eds (1995) A geological background for planning and development in Wigan. Technical Report WN/95/3. British Geological Survey. pp 151Google Scholar
  28. Forster A, Lawrence DJD, Highley DE, Cheney CS, Arrick A (2004) Applied geological mapping for planning and development: an example from Wigan UK. Q J Eng Geol Hydrogeol 37:301–315CrossRefGoogle Scholar
  29. Hack R, Orlic B, Ozmutlu S, Rengers N (2006) Three and more dimensional modelling in geo-engineering. Bull Eng Geol Env 65:143–153CrossRefGoogle Scholar
  30. Hinze C, Sobisch H-G, Voss H-H (1999) Spatial modelling in geology and its practical use. Mathematische Geologie 4:51–60Google Scholar
  31. Howland AF (2000) The history of the development of procedure for the rapid assessment of environmental conditions to aid the urban regeneration process at London Docklands. Eng Geol 60:117–125CrossRefGoogle Scholar
  32. Jackson CR, Spink AEF (2004) User’s manual for the groundwater flow model ZOOMQ3D. British Geological Survey Internal Report, IR/04/140. pp 94Google Scholar
  33. Jackson CR, Hughes AG, Bloomfield JP, Rutter HK (2004) Numerical modelling of groundwater flow in the Darent catchment and Swanscombe area Chalk aquifer. British Geological Survey Commissioned Report, CR/03/183C. p 140Google Scholar
  34. Jackson I (2004) Britain beneath our feet. In: British geological survey occasional publication No. 4, p 114Google Scholar
  35. Kessler H, Mathers S (2004) Maps to models. Geoscientist 14(10):4–6Google Scholar
  36. Kesslar H, Mathers SJ, Sobisch H-G (2004) GSI3D: The software and methology to build near surface 3-D geological models. BGS Internal Report, IR/04/029Google Scholar
  37. Kindlarski E (1984) Ishikawa diagrams for problem–solving. Qual Prog 17(12):26–30Google Scholar
  38. Lake RD, Northmore KJ, Dean MT, Tragheim DG (1992) Leeds : a geological background for planning and development : 1:10000 sheets SE23NW, NE, SE and SE33NW, NE, SW, SE : parts of 1:50000 geological sheets 69 (Bradford), 70 (Leeds), 77 (Huddersfield) and 78 (Wakefield). British Geological Survey, Onshore Geology Series, Technical Report WA/92/001. p 83Google Scholar
  39. Lelliott MR, Bridge DM, Kesslar H, Price SJ, Seymour KJ (2006) The application of 3D geological modelling to aquifer recharge assessments in an urban environment. Q J Eng Geol Hydrogeol 39:293–302CrossRefGoogle Scholar
  40. Lewis M, Cheney C, Ó Dochartaigh (2008) The national assessment of permeability indices. British Geological Survey Report (in press)Google Scholar
  41. McKirdy AP, Thompson A, Poole J (1998) Dissemination of information on the earth sciences to planners and other decision-makers. In: Bennett MR, Doyle P (eds) Issues in environmental geology: a British perspective. The Geological Society of London, OxfordGoogle Scholar
  42. ODPM (2004). Planning Policy Statement 23: Planning and Pollution control. p 20Google Scholar
  43. Pasak J, Ryber J (1961) Die Darstellung ingeneieurgeologischerVerhaltnisse in der Karte 1:25 000. Z Angew Geol 7(3):36–139Google Scholar
  44. Powell JH, Glover BW, Waters CN (1992) A geological background for planning and development in the ‘Black Country’: British Geological Survey, Onshore Geology Series, Technical Report WA/92/33. p 79Google Scholar
  45. Roberts GD (1964) Investigation versus exploration. Bull Assoc Eng Geol 1(2):37–53Google Scholar
  46. Rosenbaum MS (2003) Characterisation of the shallow subsurface: implications for urban infrastructure and environmental assessment. In: Rosenbaum MS, Turner AK (eds) New paradigms in subsurface prediction, Lecture notes in earth sciences 99. Springer, Berlin, pp 3–6Google Scholar
  47. Royse KR, Entwisle D, Price S, Terrington R, Venus J (2006) Gateway to Olympic success. Geoscientist 16(5):4–10Google Scholar
  48. Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd National Conference ACM, ACM, pp 517–524Google Scholar
  49. Smith A, Ellison RA (1999) Applied geological maps for planning and development: a review of examples from England and Wales 1983 to 1996. Q J Eng Geol 32:S1–S44CrossRefGoogle Scholar
  50. Sobisch H-G (2000) Ein difitles raeumliches Modell des Quartaers der GK25 Blatt 3508 Nordhorn auf der Basis vernetzer Profilschnitte. Shaker Verlag, AachenGoogle Scholar
  51. Strange PJ, Booth SJ, Ellison RA (1998) Development of ‘rockhead’ computer –generated geological models to assist geohazards prediction in London. In Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society Engineering geology special publication 15, 409–414Google Scholar
  52. Thompson A, Hine PD, Greif JR, Poole JS (1998) Environmental geology in land use and planning: Advice for planners and developers. Report to the Department of the EnvironmentGoogle Scholar
  53. Turner AK (2003) Putting the user first: implications for subsurface characterisation. In: Rosenbaum MS, Turner AK (eds) New paradigms in subsurface prediction, Lecture notes in earth sciences 99. Springer, Berlin, pp 61–83Google Scholar
  54. Turner AK (2006) Challenges and trends for geological modelling and visualisation. Bull Eng Geol Environ 65:109–127CrossRefGoogle Scholar
  55. Water Resources Board (1972) The hydrogeology of the London Basin. Unpublished reportGoogle Scholar

Copyright information

© British Geological Survey 2008

Authors and Affiliations

  1. 1.British Geological SurveyKingsley Dunham CentreNottinghamUK

Personalised recommendations