Impacts des aménagements en montagne sur les processus hydrologiques et l’évolution géodynamique des versants (Les Arcs, Savoie, France)

Original Paper

Abstract

This work focuses on the interaction between human activity in mountainous areas and slope movement hazards. The paper considers the triggering factors and processes of instability in the urbanized area of Les Arcs, an area exploited for mass ski runs and where many debris flows have occurred over the last 40 years. A progressive survey of the geological, geomorphological, hydrological, hydrogeological and climatic contexts is necessary to tackle the complexity of the phenomena. The human impact is considered as well. From the analysis, the geology associated with a specific climate was determined to be the main triggering factor for debris flow hazards. The influence of the glacial and postglacial period on the geomorphological aspects (e.g. steep slopes) and on the mechanical component of the superficial formations is the main factor. Furthermore, an analysis of regional meteorological data over the last 5 decades has emphasized a significant evolution of the climate since the 1960s which resulted in a general increase in temperature, rainfall (with seasonal variations) and the occurrence of extreme weather events, with long term implications for erosion and on water balance. This seems to be exacerbated by recent human activities which have significantly changed the natural environment: deforestation, changes in vegetation, the development of impervious surfaces such as roofs, roads and car parks, the creation of ski runs and the intensive exploitation of the catchment, all of which may have an influence on runoff and erosion affecting the natural surface structure. These changes and their effects on such factors as runoff and erosion have been reviewed and analyzed. In particular, the effects on hydrology have been highlighted by a hydrological modeling created using PCRaster Environmental Software. The hydrology of the Ravoire torrent before the creation of the ski resort was compared with the present configuration of the catchment. The annual water balance model shows that the ski resort generates a significant increase in the river flow compared to that before the change in land use. The parametric analyses undertaken revealed that the deforestation, the development of ski slopes and impervious areas are responsible for the reduction in infiltration inducing runoff. The maximum increase in water flow occurs during periods of natural high water flow (during snow melt) when the risk of debris flows is naturally high. For the last 20 years, this phenomenon has been amplified by the increasing production of artificial snow on the ski runs. Finally, a complementary model was created to consider the effects over a short time scale. The results of this rain event model emphasize the change in the hydrological response of the rivers after rainfall as a consequence of the change in land use. In particular this indicated a rise in the peak flow towards the resort, which may activate erosive processes above the debris flow source areas.

Keywords

Natural hazards Anthropogenic land use Debris flows Runoff Erosion Hydrological modelling 

Résumé

Aujourd’hui, l’homme, par les progrès techniques qu’il développe, défie les limites autrefois imposées par la nature, en colonisant des milieux parfois extrêmes. En outre, il accroît sa vulnérabilité en s’exposant plus directement aux aléas naturels, mais surtout, il génère une charge croissante sur son environnement, et dans une certaine mesure, amplifie l’intensité du risque pour lui-même. Cette étude a pour objectif d’identifier les facteurs et processus à l’origine du déclenchement des laves torrentielles sur le versant des Arcs et, plus particulièrement, de mettre en rapport le développement de l’activité anthropique et l’occurrence de ces phénomènes destructeurs. Compte tenu des phénomènes mis en jeu nous optons pour une approche progressive de l’aléa en étudiant successivement les contextes géologique, géomorphologique, hydrogéologique et climatique du site. Nous complétons cette analyse par l’étude des transformations induites par l’homme sur le milieu. En particulier, leur influence sur l’hydrologie des torrents est mise en évidence au moyen d’une modélisation.

Mots clés

Risques naturels Laves torrentielles Aménagement Ruissellement Érosion Modélisation hydrologique 

Références

  1. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  2. Antoine P, Barféty JC, Vivier G, Debelmas J, Desmons J, Fabre J, Loubat H, Vautrelle C (1992) Notice explicative, Carte géol. France (1/50 000), feuille Bourg-Saint-Maurice (727). BRGM, Orléans, 110pGoogle Scholar
  3. Ardvisson J (2001) Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden I. Soil physical properties and crop yield in six field experiments. Soil Tillage Res 60:67–78CrossRefGoogle Scholar
  4. Bonnet-Staub I (1999) Définition d’une typologie des dépôts de laves torrentielles et identification de caractères granulométriques et géotechniques concernant les zones sources. Bull Eng Geol Env 57:359–367CrossRefGoogle Scholar
  5. Cain NP, Hale B, Berkelaar E, Morin D (2001) Critical review of effects of NaCl and other road salts on terrestrial vegetation in Canada. Rapport LCPE, Env Canada, Quebec, 200pGoogle Scholar
  6. Cernusca A, Angerer H, Newesely C, Tappeiner U (1990) Auswirkungen von Kunstschnee—eine Kausalanalyse der Belastungsfaktoren. Verhandlungen des Gesellschaft für Ökologie 19:746–757Google Scholar
  7. Cojean R (1994) International workshop on floods and inundations related to large earth movements, Trent, pp A13.1–A13.19Google Scholar
  8. Cojean R, Staub I (1998) Mécanismes d’initiation des laves torrentielles dans les Alpes françaises, Comptes-rendus du 8ème Congrès de l’AIGI, vol 3. Vancouver, pp 2075–2082Google Scholar
  9. Convention alpine (2006) Changement du climat dans l’espace alpin, Manif thém, Galtür, Österreich, 48pGoogle Scholar
  10. Cosandey C, Robinson M (2000) Hydrologie continentale, Armand Colin, 360pGoogle Scholar
  11. Coussot P (1993) Rhéologie des boues et laves torrentielles. Etude des dispersions et suspensions concentrées. Série montagne 5, CEMAGREF, 413pGoogle Scholar
  12. Endo T, Tsuruta T (1969) On the effect of tree’s roots upon the shearing strength of soil. Ann Rep Hokkaido Branch Forest Experiment Station, Sapporo, pp 167–182Google Scholar
  13. Geiger R (1961) Das Klima der bodennahen Luftschicht. F Vieweg, Braunschweig & Sohns, 4 auflageGoogle Scholar
  14. Hungr O, Evans SG, Bovis MJ, Hutchinson JN (2001) A review of the Classification of Landslides of Flow Type. Environ Eng Geosci VII(3):221–238Google Scholar
  15. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology, vol 1. In: Landslides. Proceedings of the 5th international symposium on landslides, pp 3–35Google Scholar
  16. IGN (1928) Bourg-Saint-Maurice-Sainte-Foy-Tarentaise. Carte topographique 3 (1:50 000), Etat MajorGoogle Scholar
  17. IGN (1977) Massif de la Vanoise-Tarentaise. Carte topographique 2 35 (1:25 000)Google Scholar
  18. IGN (1998) Les Arcs, La Plagne—Parc National de la Vanoise. Carte topographique 3532 ET (1:25 000)Google Scholar
  19. Jomelli V, Pech VP, Chochillon C, Brunstein D (2004) Geomorphic variations of debris flows and recent climatic change in the French Alps. Clim Chang 64:77–102CrossRefGoogle Scholar
  20. Karssenberg D, Wesseling CG, Van Deursen WPA (1996) PCRaster version 2 manual. Utrecht University, Netherland, 380pGoogle Scholar
  21. Koscielny M (2006) Impacts des aménagements sur l’évolution géodynamique des versants. Application au site des Arcs. Thèse de doctorat, UMLV-ENSMP, 350pGoogle Scholar
  22. Loi Canadienne sur la Protection de l’Environnement (1999) Liste des substances d’intérêt prioritaire. Rapp d’éval Sels de voirie, 200pGoogle Scholar
  23. Meunier M (1994) Les progrès de la connaissance et les méthodes d’étude des phénomènes torrentiels. La Houille Blanche 3:25–31CrossRefGoogle Scholar
  24. Mosimann T (1983) Landschaftsökologischer Einfluss von Anlagen für den Massenskisport. II. Bodenzustand und Bodenstörungen auf planierten Skipisten in verschiedenen Lagen. Materialen zur Physiogeographie 3:72Google Scholar
  25. Mougin P (1914) Les torrents de la Savoie, Grands Etablissements de l’Imprimerie Générale, Grenoble, 1251pGoogle Scholar
  26. Neuwinger I (1982) Bioelementversorgung, Wasserspeicherung und Erodierbarkeit gestörter Waldböden. Informationsdienst 211, Forstl Bundesv t, Wien, 3pGoogle Scholar
  27. Prandini L, Guidicini G, Bottura JA, Ponçano WL, Santos AR (1977) Behaviour of the vegetation in slope stability: a critical review. Bull Eng Geol, Krefeld 16:51–55CrossRefGoogle Scholar
  28. Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben torrent (Swiss Alps). Clim Chang 36:371–389CrossRefGoogle Scholar
  29. Rixen C (2002) Artificial snow and snow additives on ski pistes: interactions between snow cover, soil and vegetation. PhD thesis, University of Zurich, 162pGoogle Scholar
  30. Sidle RC, Pearce AJ, O’Loughlin CL (1985) Hillslope stability and land use. Water resources Monogram, vol 11. Am Geophys Union, 140pGoogle Scholar
  31. Sowers GF (1993) Human factor in civil and geotechnical engineering failures. J Geotech Eng 119(2):238–256CrossRefGoogle Scholar
  32. Sternberg HO (1949) Enchentes e movimentos coletivos do solo no vale do Paraiba, em dezembro de 1948: influêcia da explotaçao destrutiva da terra (in Portuguese). Rev Bras Geogr 11(2):223–261Google Scholar
  33. Sturm M, Holmgren J, König M, Morris K (1997) The thermal conductivity of seasonal snow. J Glaciol 43:26–41Google Scholar
  34. Varnes DJ (1978) Slope movement. Types and processes. In: Landslides analysis and control, vol 176. Spec rep edit Nat Acad of Schuster, pp 11–33Google Scholar
  35. Vivian H, Thouret JC, Bocquet G, Dedieu JP, Fabre D, Thomas A (1994) Les instabilités d’un bassin versant montagnard anthropisé. Le torrent de l’Eglise, Les Arcs, Savoie. BRGM 233:192pGoogle Scholar
  36. Zimmermann M, Haeberli W (1992) Climatic change and debris flow activity in high-mountain areas. A case study in the Swiss Alps. Greenhouse-impact on cold-climate ecosystems and landscapes. Catena Suppl 22:59–72Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Centre de GéosciencesEcole des Mines de ParisParisFrance
  2. 2.Conservatoire des Arts et Métiers de Paris, Chaire de GéotechniqueParisFrance

Personalised recommendations