Bulletin of Engineering Geology and the Environment

, Volume 67, Issue 4, pp 597–605

Erosion d’une vase de l’estuaire de la Loire sous l’action du courant

Erosion of a mud from the Loire estuary by a flow
Original Paper


This research work deals with an experimental study on the erosion phenomenon of a mud under the action of a water current. It is observed from research works carried out by Partheniades (J Hydraul Div ASCE 91(HY1):105–139, 1965), Migniot (La Houille Blanche 1&2:11–29, 95–111, 1989), Ockenden and Delo (GeoMar Lett 11:138–142, 1991), Aberle et al. (Mar Geol 207:83–93, 2004), among others, that mud erosion process by an hydrodynamic action depends mainly on sediment properties. Based on a literature study, this critical stress is assumed to be proportional either to the effective cohesion (Eq. 2) or to the yield stress (Eq. 4) of the sediment bed. Six erosion test series have been performed at six different concentrations of a mud from the Loire estuary. Some properties of the tested sediments are: a solid particles density ρs= 2,550 kg m−3, a liquidity and plasticity limit at 140 and 70% of the water content, respectively, a mean size of the dispersed mineral fraction determined by laser techniques of 10 μm, and a volatile matters content of 11.86% by total dry weight burned at 550°C. As the rheological behaviour is difficult to describe, the sediment strength is characterized by only a parameter, namely, the yield stress τy. It is measured with a coaxial cylinder Brookfield LVT viscosimeter following a defined procedure (Hosseini in Liaison entre la rigidité initiale et la cohésion non drainée dans les vases molles—Relation avec la dynamique sédimentaire. Thèse, Université de Nantes, 167 p, 1999). For each studied concentration, three successive erosion tests are carried out, and for every erosion test, 15 successive measurements of τy are made. The mean values and the standard deviations of τy are shown in Table 1 as a function of the bed sediment concentration C. A confined flume has been conceived and built to characterize the erosion rates. With this device, a current-induced shear stress is generated above an homogeneous deposited sediment (Fig. 1). The bed shear stress τo is calculated from the measured mean velocity V by Eq. 5. The friction coefficient cf involved in Eq. 5 has been evaluated from measurements of the hydraulic pressure loss. Finally, the validity of Eq. 5 has been confirmed by five calibration tests on the incipient of the movement of sands for which results are compared with Shields diagram in Fig. 2. The observed erosion mechanisms affecting cohesive sediments depend mainly on the value of the yield stress. For a fluid mud (τy less than 3 N m−2), the bed shear stress produces at first a wavy motion on the bed surface with a progressive undulation. When the shear stress increases, resuspension produces a diluted sediment cloud which is entrained and dispersed by the flow. For a plastic mud (τy greater than 3 N m−2), erosion occurs by a wrenching of aggregates which are transported near the bottom. Initially, the eroded aggregates measure several millimetres in size; but, once transported, aggregates break into very rigid and compact aggregates of maximum size close to 1 mm in all the cases. During erosion tests, erosion volumetric rates Ev have been evaluated under steady-state bed shear stress τo from the observed variation in time of suspended sediment concentration. A generalized erosion is assumed for Ev≥ Evo= 3 × 10−7 m s−1 (that is the equivalent of 1 mm sediment layer eroded per hour). The generalized erosion occurs above a critical bed shear stress τoe which is linked to τy and mud density through Eq. 7. A phenomenological law defined by Eq. 8 is proposed to calculate the erosion rate as a function of yield stress and hydrodynamic shear stress at the bottom. For τoτoe, a small erosion is observed, which is described by a formulation given by Cerco et al. (Water quality model of Florida Bay. U.S. Army Engineer Research and Development Center, ERDC/EL TR−00-10, Vicksburg, USA, 260 p, 2000). Above τoe, a small increase in τo produces an important erosion rate rise which is described by a formulation suggested by Mehta and Partheniades (Resuspension of deposited cohesive sediment beds. In: Proceedings of the 18th coastal engineering conference, Cape Town, South Africa, 2:1569–1588, 1982). Figure 3 shows as a function of τo the observed values of Ev (discrete symbols) as well as the proposed model (in solid lines) for the six concentrations. For the theoretically maximum value of Ev, the hydrodynamic shear stress is very high with regard to the sediment cohesion; and then, the water flux produces an entrainment of underlying fluid mud layers. The asymptotic law obtained from the model of Kranenburg and Winterwerp (1997) plotted in dashed lines in Fig. 3, is expressed by Ev= 0.3 u*. A sediment trap inserted in the experimental system allows a sample of eroded mud aggregates to be obtained. It is observed that the maximum value of the diameter DM of the eroded aggregates depends on the density and yield stress of the initially deposited mud according to Eq. 10. In the same way, the density of the aggregates issued from plastic mud erosion is measured following an original experimental method and procedure (Table 3). The erosion of plastic muds with a concentration from 310 to 420 kg m−3 produces aggregates with a concentration close to 400 kg m−3 and yield stress a little greater than 100 N m−2.


Erosion Mud Rheology Physical modelling Loire River 


Le phénomène d’érosion des vases sous l’action d’un courant est abordé expérimentalement. Cette étude comporte six séries d’essais d’érosion réalisées en laboratoire sur une vase de Loire pour six concentrations différentes. Pour chaque concentration, trois essais successifs ont été effectués afin de pouvoir analyser les résultats statistiquement. La rigidité initiale et la concentration des vases sont mesurées en suivant un protocole d’essai. Des lois phénoménologiques sont proposées pour relier le taux d’érosion mesuré à la rigidité initiale du sédiment et à la contrainte hydrodynamique. Un piège à sédiments intégré dans le dispositif d’essai, permet d’obtenir un échantillon de matériau érodé. La taille des copeaux de vase érodés et leur densité sont mesurées grâce à une technique expérimentale originale. Une expression mathématique est ainsi avancée pour relier la taille des copeaux à la densité et à la rigidité initiale du dépôt dont ils proviennent.

Mots clés

Erosion Vase Rhéologie Modélisation physique Loire 


  1. Aberle J, Nikora V, Walters R (2004) Effects of bed material properties on cohesive sediment erosion. Mar Geol 207:83–93. doi:10.1016/j.margeo.2004.03.012 CrossRefGoogle Scholar
  2. Berlamont J, Ockenden M, Toorman E, Winterwerp J (1993) The characterisation of cohesive sediment properties. Coast Eng 21:105–128. doi:10.1016/0378-3839(93)90047-C CrossRefGoogle Scholar
  3. Cerco CF, Bunch BW, Teeter AM, Dortch MS (2000) Water quality model of Florida Bay. U.S. Army Engineer Research and Development Center, ERDC/EL TR−00-10, Vicksburg, USA, 260 pGoogle Scholar
  4. Cormault P (1971) Détermination expérimentale du débit solide d’érosion des sédiments fins. In: Proceedings of the 14th meeting IAHR, ParisGoogle Scholar
  5. Delo EA, Ockenden MC (1992) Estuarine muds manual. HR Wallingford report SR309, 23 pGoogle Scholar
  6. Einstein HA (1942) Formulas for the transportation of bed-loads. Trans ASCE 107:561–577Google Scholar
  7. Hjulström F (1935) Studies of the morphological activity of rivers as illustrated by rivers Fyris, chap III. Bull Geol Inst Uppsala 25, pp 221–527Google Scholar
  8. Hosseini K (1999) Liaison entre la rigidité initiale et la cohésion non drainée dans les vases molles—Relation avec la dynamique sédimentaire. Thèse, Université de Nantes, 167 pGoogle Scholar
  9. Houwing EJ (1999) Determination of the critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden sea coast. Estuar Coast Shelf Sci 49:545–555 doi:10.1006/ecss.1999.0518 CrossRefGoogle Scholar
  10. Kranenburg C, Winterwerp JC (1997) Erosion of fluid mud layers—I: entrainment model. J Hydraul Eng 123(6):504–511 doi:10.1061/(ASCE)0733-9429(1997)123:6(504) CrossRefGoogle Scholar
  11. Krishnappan BG, Droppo IG (2006) Use of an in situ erosion flume for measuring stability of sediment deposits in Hamilton Harbour, Canada. Water Air Soil Pollut Focus 6:557–567 doi:10.1007/s11267-006-9039-0 CrossRefGoogle Scholar
  12. Larras J (1972) Hydraulique et granulats. Eyrolles, Paris, 254 pGoogle Scholar
  13. Mehta AJ, Partheniades E (1982) Resuspension of deposited cohesive sediment beds. In: Proceedings of the 18th coastal engineering conference, Cape Town, South Africa, 2:1569–1588Google Scholar
  14. Meyer Peter E, Müller R (1948) Formulas for bed-load transport. In: Proceedings of the 2nd meeting IAHR, Stockholm, pp 39–64Google Scholar
  15. Migniot C (1968) Etude des propriétés physiques de différents sédiments très fins et leur comportement sous des actions hydrodynamiques. La Houille Blanche 7:591–620CrossRefGoogle Scholar
  16. Migniot C (1989) Tassement et rhéologie des vases. La Houille Blanche 1, 2: 11–29, 95–111Google Scholar
  17. Ockenden MC, Delo EA (1991) Laboratory testing of muds. Geomar Lett 11:138–142. doi:10.1007/BF02430999 CrossRefGoogle Scholar
  18. Parchure TM, Mehta AJ (1985) Erosion of soft cohesive sediment deposits. J Hydraul Eng 111:1308–1326CrossRefGoogle Scholar
  19. Partheniades E (1965) Erosion and deposition of cohesive soils. J Hydraul Div ASCE 91(HY1):105–139Google Scholar
  20. Pauc H (1980) Floculation et potentiel de surface des matériaux en suspension en environnement d’embouchure. Comptes Rendus de l’Académie des Sciences (B) 290:175–178Google Scholar
  21. Périgaud C (1983) Mécanique de l’érosion des vases. La Houille Blanche 7/8:501–512CrossRefGoogle Scholar
  22. Sanchez M, Grovel A, Hosseini K (2000) Impact sédimentaire des travaux d’aménagement de l’estuaire de la Loire. Bull Eng Geol Environ 59:239–246 doi:10.1007/s100640000047 CrossRefGoogle Scholar
  23. Sanchez M, Levacher D (2007) The influence of particle size of the dispersed mineral fraction on the settlement of marine and estuarine muds. Geomar Lett 27:303–313 doi:10.1007/s00367-007-0053-7 CrossRefGoogle Scholar
  24. Shields A (1936) Application of similarity principles and turbulence research to bed-load movement. Mitteilunger der Preussischen Versuchsanstalt für Wasserbau und Schiffbau 26:5–24 (in German)Google Scholar
  25. Tolhurst TJ, Black KS, Paterson DM, Mitchener HJ, Termaat GR, Shayler SA (2000) A comparison and measurement standardisation of four in situ devices for determining the erosion shear stress of intertidal sediments. Continent Shelf Res 20:1397–1418 doi:10.1016/S0278-4343(00)00029-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Faculté des Sciences et des Techniques, UMR 6112 CNRS, Laboratoire de Planétologie et GéodynamiqueUniversité de NantesNantesFrance
  2. 2.Faculté des Sciences, UMR 6143 CNRS, Morphodynamique Continentale et CôtièreUniversité de CaenCaenFrance

Personalised recommendations