Advertisement

Engineering geology maps: landslides and geographical information systems

  • J. Chacón
  • C. Irigaray
  • T. Fernández
  • R. El Hamdouni
Original Paper

Abstract

IAEG Commission No. 1—Engineering Geological Maps—is developing a guide to hazard maps. Scientists from 17 countries have participated. This paper is one of a series that presents the results of that work. It provides a general review of GIS landslide mapping techniques and basic concepts of landslide mapping. Three groups of maps are considered: maps of spatial incidence of landslides, maps of spatial–temporal incidence and forecasting of landslides and maps of assessment of the consequences of landslides. With the current era of powerful microcomputers and widespread use of GIS packages, large numbers of papers on the subject are becoming available, frequently founded on different basic concepts. In order to achieve a better understanding and comparison, the concepts proposed by Varnes (Landslide hazard zonation: a review of principles and practice, 1984) and Fell (Some landslide risk zoning schemes in use in Eastern Australua and their application 1992; Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272, 1994) are taken as references. It is hoped this will also add to the international usefulness of these maps as tools for landslide prevention and mitigation. Six hundred and sixty one papers and books related to the topic are included in the references, many of which are reviewed in the text.

Keywords

GIS Landslides IAEG Commission No. 1 Engineering geological maps 

Résumé

La Commission N°1 de l’AIGI ≪Cartes de géologie de l’ingénieur≫ réalise un guide sur les cartes d’aléas. Des scientifiques de 17 pays ont apporté leur contribution. Cet article est l’un d’une série d’articles relatant les travaux de cette Commission. Il présente les concepts de base de la cartographie de glissements de terrain ainsi qu’un panorama de l’apport des techniques SIG (Systèmes d’Information Géographique) à cette cartographie. Trois groupes de cartes ont été considérés: des cartes d’occurrence spatiale de glissements de terrain, des cartes d’occurrence spatio-temporelle et de prévision de glissements de terrain et des cartes d’évaluation des conséquences de glissements de terrain. A notre époque de développement de la micro-informatique et des logiciels SIG, de nombreuses publications sont produites sur ce sujet, avec différentes bases conceptuelles. Afin de faciliter compréhension et comparaisons, les concepts proposés par Varnes (Landslide hazard zonation: a review of principles and practice, 1984) et Fell (Some landslide risk zoning schemes in use in Eastern Australua and their application 1992; Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272, 1994) sont pris comme référence. On espère que le travail réalisé rendra plus facile l’utilisation de ces cartes comme outil de prévention et de limitation des effets des glissements de terrain. Six cent soixante une articles et ouvrages relatifs au sujet traité son référencés en bibliographie, nombre d’entre eux étant appelés dans le texte de l’article.

Mots clés

SIG Glissements de terrain Commission N°1 de l’AIGI Cartes de géologie de l’ingénieur 

Notes

Acknowledgments

This review has been funded by project REN2002-03366 on Landslides and active tectonics in the Guadalfeo river basin (Granada, Spain), CICYT- I+D, Spanish Ministery of Education and Science and by the Research Group on Environment: Natural Hazards and Terrain Engineering (RNM 121) Andalusian Plan of Research, Seville (Spain). The encouraging support of B. Marker, who kindly reviewed the final English version, M. Culshaw, Earl E. Brabb and F. Olóriz is acknowledged. P. Reichenbach is thanked for kind permission to use Figs. 14, 16 and 17 and the papers, maps, comments and information received from C. Bonnard, N.C. Evans, B. Marker, J. Marquínez, P. Gori and G. Tosatti, are acknowledged, as well as a preliminary English reviewing by R. Jiménez.

References

  1. Abbot B, Bruce I, Savigny W, Keegan T, Oboni F (1998a) A methodology for the assessment of rockfall hazard and risk along linear transportation corridors. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1195–1200Google Scholar
  2. Abbot B, Bruce I, Savigny W, Keegan T, Oboni F (1998b) Application of a new methodology for the management of rockfall risk along a railway. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1195–1200Google Scholar
  3. Agili F, Bartolomei A, Casagli N, Canuti P, Catani F, Ermini L, Farina P, Kukavicic M, Mirannalti M, Righini G (2004) Coupling traditional methods and new technology contributions to landslide risk assessment in the Arno river basin. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 151–155Google Scholar
  4. Agostoni S, Laffi R, Mazzocola D, Scieza E, Presbitero M (1998) Landslide inventory data base for an Alpine area, Lombardia, Italy. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 919–924Google Scholar
  5. Aiello V, Barile A, Silvestri F, Pescatore TS, Pinto F (2004) An application of a GIS based methodology for the seismic zonation of slope stability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 327–335Google Scholar
  6. Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention of natural disasters in developing countries. Geomorphology 47:107–124Google Scholar
  7. Alcántara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40Google Scholar
  8. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265Google Scholar
  9. Aleotti P, Chowdhury (1998) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44Google Scholar
  10. Aleotti P, Baldelli P, Polloni G (2000) Hydrogeological risk assessment of the Po River Basin (Italy). In: Landslides in research, theory and practice. Thomas Telford, London, pp 13–18Google Scholar
  11. Alfoldi TT (1974) Landslide analysis and susceptibility mapping. In: Symposium on remote sensing and photo interpretation, 7th, Banff, Alberta, Proceedings of the International Society for Photogrammetry, Ontario, Canada, vol 1, pp 379–388Google Scholar
  12. Al-Homoud AS, Masanat Y (1998) A classification system for the assessment of slope stability of terrain along highway routes in Jordan. Environ Geol 34(1):59–69Google Scholar
  13. Alonso EE (1976) Risk analysis of slopes and its application to slopes in Canadian sensitive clays. Géotechnique 26(3):453–472Google Scholar
  14. Amaral C, Furtado A (2004) Largescale quantitative landslide risk mapping at Favela da Formiga, Rio de Janeiro. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 293–296Google Scholar
  15. An P, Moon WM, Rencz A (1991) Application of fuzzy set theory for integration of geological, geophysical and remote sensing data. Can J Explor Geophys 27:1–11Google Scholar
  16. Anderberg MR (1973) Cluster analysis for applications. Academic, New York, p 359Google Scholar
  17. Aniya M (1985) Landslide susceptibility mapping in the Amahata river basin, Japan. Ann Assoc Am Geogr 75(1):102–114Google Scholar
  18. Anonymous (1972) The preparation of maps and plans in terms of engineering geology. Quart J Eng Geol 5:297–397Google Scholar
  19. Anonymous (1976) Engineering geology maps: a guide to their preparation. The UNESCO Press, ParisGoogle Scholar
  20. Antoine P (1977) Refléxions sur la cartographie ZERMOS et bilan de expériences en cours. Bull Bur Rech geol min Sec. III (1-2), 9–20Google Scholar
  21. Antonello G, Casagli N, Farina P, Fortuny J, Leva D, Nico G, Sieber AJ, Tarchi D (2003) A ground-based interferometer for the safety monitoring of landslides and structural deformations. In: International Geoscience Remote Sensing Symposium (IGARSS) 1:218–220Google Scholar
  22. Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Natural Hazards Earth Syst Sci 2:3–14Google Scholar
  23. Arias A (1970) A measure of earthquake intensity. In: Hansen RJ (ed) Seismic design for nuclear power plants. Massachusetts Institute of Technology Press, Cambridge, pp 438–483Google Scholar
  24. Astaras T, Kalathas A, Oikonomidis D, Lambrinos N, Soulakellis N (1997) Delineation of landslides using GIS and digital image procesing techniques on multitemporal Landsat 5 TM images: a case study from the Pindus mountain, Greece. In: Spiteri A (ed) Remote Sensing ’96-integrated applications for risk assessment and disaster prevention for the Mediterranean, vol 215. A.A. Balkema, RotterdamGoogle Scholar
  25. Atkinson PM, Massari R (1998) Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy. Comput Geosci 24(4):373–385Google Scholar
  26. Atkinson P, Jiskoot H, Massari R, Murray T (1998) Generalized linear modelling in geomorphology. Earth Surf Processes Landforms 23:1185–1195Google Scholar
  27. Augusto Filho O (2004) Mass movements identification, modeling, analysis and mapping: some experiences in the southern of Brazil, Sao Paulo state. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 57–68Google Scholar
  28. Augusto Filho O, Magalhaies FS (2004) Identification of slope instability hazard areas in the Anchietalmigrantes Highway System, located in the Serra do Mar mountain range, Sao Paulo state, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 273–280Google Scholar
  29. Ayala-Carcedo FJ, Cubillo-Nielsen S, Alvarez A, Domínguez MJ, Laín L, Laín R, Ortíz G (2003) Large scales rock fall reach susceptibility maps in La Cabrera Sierra (Madrid) performed with GIS and dynamic analysis at 1:5.000. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):341–360Google Scholar
  30. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31Google Scholar
  31. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano river, Niigata Prefecture, Japan. Landslide 1:73–81Google Scholar
  32. Ayenew T, Barbieri G (2005) Inventory of landslides and susceptibility mapping in the Dessie area, northern Ethiopia. Eng Geol 77(1–2):1–15Google Scholar
  33. Babu GLS, Mukesh MD (2003) Risk analyse of landslides—a case study. Geotech Geol Eng 21:113–127Google Scholar
  34. Baeza C (1994). Evaluación de las condiciones de rotura y la movilidad de los deslizamientos superficiales mediante el uso de técnicas de análisis multivariante. PhD thesis, Department Ingeniería del Terreno y Cartográfica, UPC, Barcelona, SpainGoogle Scholar
  35. Baeza C, Corominas J (1996) Assessment of shallow landslide susceptibility by means of statistical techniques. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 147–152Google Scholar
  36. Baeza C, Corominas J (2001) Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf Processes Landforms 26:1251–1263Google Scholar
  37. Baillifard F, Jaboyedov M, Rouiller D, Robichaud GR, Locat P, Locat J, Couture R, Hamel G (2004) Towards a GIS-based rockfall hazard assessment along the Quebec City Promontory, Quebec, Canada. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 207–214Google Scholar
  38. Bak P, Tang C, Wiesenfeld K (1988) Self-organized criticality. Phys Rev A 38:364–374Google Scholar
  39. Baldelli P, Aleotti P, Polloni G (1996) Landslide susceptibility numerical mapping at the Messina Straits crossing site, Italy. In: Senneset K (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 153–158Google Scholar
  40. Baldwin JE II, Wright-Baldwin RJ, Benton DC (1986) Mapping slope hazard susceptibility in Aldercroft Heights following the July 1985 Lexington Reservoir fire, Santa Clara County, Calfornia [abs.]. In: Proceedings of the Association of Engineering Geologists, 29th annual meeting, San Francisco, 1986, abstracts and program, p 43Google Scholar
  41. Bandeira APN, Coutinho RQ, Alheiros MM (2004) Landslide hazard map in an area of Camaragibe city, Pernambuco, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 303–310Google Scholar
  42. Barbolini M, Natale L, Savi F (2002) Effects of release conditions uncertainty on avalanche hazard mapping. Nat Hazards 25:225–244Google Scholar
  43. Bardinet C, Bournay E (1999) The use of 3-D mapping in geological research and risks analysis: evaluation of a water supply project in the Kathmandu-Melamchi Area. GeoJournal 49:159–163Google Scholar
  44. Barredo JI, Benavides A, Hervás J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. JAG 2(1):9–23Google Scholar
  45. Basma AA, Kallas N (2004) Modeling soil collapse by artificial neural networks. Geotech Geol Eng 22:427–438Google Scholar
  46. Bathurst JC, Crosta GB, García-Ruiz JM, Guzzetti F, Lenzi MA, Aragues SR (2003) DAMOCLES: debris-fall assessment in mountains catchments for local end-users. In: Rickenman D, Chen C (eds) Debris-flow hazard mitigation, prediction and assessment. MillPress Science, Rotterdam, pp 1073–1083Google Scholar
  47. Baynes FJ, Lee EM (1998) Geomorphology in landslide risk analysis, an interim report. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1129–1136Google Scholar
  48. Bell R, Glade T (2004) Quantitative risk analysis for landslides—examples from Bildurdalur, NW Iceland. Nat Hazards Earth Syst Sci 4(1):117–131Google Scholar
  49. Berardino P, Costantini M, Franceschetti G, Iodice A, Pietranera L, Rizzo V (2003) Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea (Basilicata, Italy). Eng Geol 68(1–2):31–51Google Scholar
  50. Bernardos AG, Kaliampakos DC (2004) A methodology for assessing geotechnical hazards for TBM tunnelling—illustrated by the Athens Metro, Greece. Int J Rock Mech Min Sci 41:987–999Google Scholar
  51. Bernknopf F, Campbell RH, Brookshire DS, Shapiro CD (1988) A probabilistic approach to landslide hazard mapping in Cincinnati, Ohio, with applications for economic evaluation. Bull AEG, XXV 1:39–56Google Scholar
  52. Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69CrossRefGoogle Scholar
  53. Bhattacharya G, Jana D, Ojha S, Chakraborty S (2003) Direct search for minimum reliability index of earth slopes. Comput Geotechn 30:455–462Google Scholar
  54. Bieniawski ZT (1979) The geomechanical classification in rock engineering applications. In: Proceedings of the 4th International Congress Rock Mechanics, Montreux, Balkema, Rotterdam, The Netherlands, vol 2, pp 41–48Google Scholar
  55. Bieniawski ZT (1993) Classification of rock masses for engineering: the R.M.R. system and future trends. In: Hudson, Brown, Fairhurst, Hoek (eds) Comprehensive rock engineering. Pergamon Press, UKGoogle Scholar
  56. Binaghi E, Luzi L, Madella P, Pergalani F, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97Google Scholar
  57. Binaghi E, Boschetti M, Brivio PA, Gallo I, Pergalani F, Rampini A (2004) Prediction of displacements in unstable areas using a neural model. Nat Hazards 32:135–154Google Scholar
  58. Birkeland KW, Landry CC (2002) Power-laws and snow avalanches. Geophys Res Lett 29(11):49-1–49-3Google Scholar
  59. Blanc RP, Cleveland GB (1968) Natural slope stability as related to geology, San Clemente Area, Orange and San Diego Counties, California. California Division of Mines and Geology Special Report 98, 19 ppGoogle Scholar
  60. Bobrosky PT, Chung CJ, Garson D, Guthrie R (1998) Quantitative landslide hazard mapping on Northern Vancouver Island, BC, Canada. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2031–2037Google Scholar
  61. Bonham-Carter GF (1994) Geographic information systems for geoscientists. Love Printing Service Ltd., OntarioGoogle Scholar
  62. Bonnard C, Forlati F, Scavia C (eds) (2004) Identification and mitigation of large landslide risks in Europe. Adv Risk Assess 336Google Scholar
  63. Borga M, Dalla Fontana G, Da Ros D, Marchi L (1997) Shallow landslide hazard assessment using a physically based model and digital elevation data. Environ Geol 35(2/3):81–88Google Scholar
  64. Borga M, Dalla Fontana G, Cazorzi F (2002) Análisis of topographic and climatic control on rainfall-triggered shallow landsliding using a quasi-dynamic wetness index. J Hydrol 268:56–71Google Scholar
  65. Borselli L, Magaldi D, Tallini M (1998) Assessment of hillslope instability hazard based on fuzzy mathematics. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 891–898Google Scholar
  66. Bowman HN (1972) Natural Slope Stability in the City of Greater Woolongong. N.S.W. Geol Surv Recs 14(2):159–222Google Scholar
  67. Brabb EE (1982) Preparation and use of a landslide susceptibility map for a county near San Francisco, California, USA. In: Sheko A (ed) Landslides and mudflows. Reports of Alma-Ata, International Seminar UNESCO/UNEP, Centre of International Projects, GKNT, Moscow, URSS, pp 407–415Google Scholar
  68. Brabb EE (1984) Innovative approaches to landslide hazard and risk mapping. In: Proceedings of the IVth ISL, Toronto, vol 1, pp 307–324Google Scholar
  69. Brabb EE (1987) Analyzing and portraying geologic and cartographic information for land-use planning, emergency response, and decision making in San Mateo County, California. In: Proceedings of the GIS’87 San Francisco IInd annual international conference GIS, ASPRS, VA, USA, pp 362–374Google Scholar
  70. Brabb EE (1993) Priorities for landslide during the international decade of hazard reduction. In: Wagner P, Novosad S (eds) Landslides: seventh international conference and Field workshop. P. 7–14. Balkema, Rotterdam, 320 ppGoogle Scholar
  71. Brabb EE (1996) Hazard map are not enough. In: Chacón J, Irigaray C (eds) Proceedings of the Sexto Congreso Nacional y Conferencia Internacional sobre Riesgos Naturales, Ordenación del Territorio y Medio Ambiente 1, S.E.G.A.O.T. Granada, SpainGoogle Scholar
  72. Brabb EE, Pampeyan EH (1972) Preliminary map of landslide deposits in San Mateo County, California. US Geological Survey Miscellaneous Field Studies, Map MF-344, scale 1:62,500Google Scholar
  73. Brabb EE, Pampeyan EH, Bonilla MG (1972) Landslide susceptibility in San Mateo County, California. US Geological Survey Miscellaneous Field Studies, Map MF-360, scale 1:62,500 (reprinted in 1978)Google Scholar
  74. Brabb EE, Guzzetti M, Mark RK, Simpson RW Jr (1989) The extent of landsliding in northern New Mexico and similar semi-arid and arid regions. In: Sadler PM, Morton DM (eds) Landslide in a semi-arid environment. Inlan Geological Society, Riverside, pp 163–173Google Scholar
  75. Brabec B, Meister R, Stöckli U, Stoffel A, Stucki T (2001) RAIFoS: regional avalanche information and forecasting system. Cold Regions Sci Technol 33:303–311Google Scholar
  76. Brass A, Wadge G, Reading AJ (1991) Designing a geographical information system for the prediction of landsliding potential in the West Indies. In: Jones M, Cosgrove J (eds) Neotectonics and resources. Belhaven, LondonGoogle Scholar
  77. Bromhead EN (2004) Landslide slip surfaces: their origins, behaviour and geometry. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London. Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602Google Scholar
  78. Brunsden D (1999) Some geomorphological considerations for the future development of landslide models. Geomorphology 30:13–24Google Scholar
  79. Brunsden D, Prior DB (eds) (1984) Slope instability. Wiley, Chichester, 620 pGoogle Scholar
  80. Buchroithner MF (2002) Metereological and earth observation remote sensing data for mass movements preparedness. Adv Space Res 29(1):5–16Google Scholar
  81. Bulut F, Boynukalin S, Tarhan F, Ataoglu E (2000) Reliability of isopleth maps. Bull Eng Geol Environ 58:95–98Google Scholar
  82. Burrough PA (1986) Principles of geographical information systems for land resource assessment. Oxford Universty Press, OxfordGoogle Scholar
  83. Burrough PA (1989) Fuzzy mathematical methods for soil survey and land evaluation. J Soil Sci 40:477–492Google Scholar
  84. Burrough PA, van Gaans PFM, MacMillan RA (2000) High-resolution landform classification using fuzzy k-means. Fuzzy Sets Syst 113:37–52Google Scholar
  85. Burrough PA, Wilson JP, van Gaans PFM, Hansen AJ (2001) Fuzzy k-means classification of topo-climatic data as an aid to forest mapping in the Greater Yellowstone Area, USA. Landscape Ecol 16:523–546Google Scholar
  86. Burton A, Bathurst JC (1998) Physically based modelling of shallow landslide sediment yield at a catchment scale. Environ Geol 35(2/3):89–99Google Scholar
  87. Burton A, Arkell TJ, Bathurst JC (1998) Field variability of landslide model parameters. Environ Geol 35(2–3):100–114Google Scholar
  88. Calcaterra D, de Luca Tupputi Schinosa F, Fenelli GB (2004a) Rockfall hazard assessment at Mt. San Costanzo (Sorrento Peninsula, Italy). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 265–272Google Scholar
  89. Calcaterra D, de Riso R, Di Martire D (2004b) Assessing shallow debris slide hazard in the Agnano Plain (Naples, Italy) using SINMAP, a physically based slopestability model. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 177–186Google Scholar
  90. Campbell RH (1973) Isopleth map of landslide deposits. Point Duma Quadrangle, Los Angeles County, California: an experiment in generalizing and quantifying areal distribution of landslides. US Geological Survey Misc. Field Investigation Map MF-535. USGS, CaliforniaGoogle Scholar
  91. Canuti P, Casagli N, Moretti S, Leva D, Sieber AJ, Tarchi D (2002) Landslide monitoring by using ground-based radar differential interferometry. In: Rybár Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague, Balkema, Rotterdam, pp 523–528Google Scholar
  92. Canuti P, Casagli N, Ermini L, Fanti R, Farina P (2004) Landslide activity as a geoindicator in Italy: significance and new perspectives from remote sensing. Environ Geol 45(7):907–919Google Scholar
  93. Canutti P, Casagli N, Catani F, Fanti R (2000) Hydrogeological hazard and risk in archaeological sites: some case studies in Italy. J Cult Herit 1:117–125Google Scholar
  94. Capolongo D, Refice A, Mankelow J (2002) Evaluating earthquake-triggered landslide hazard at the basin scale through GIS in the Upper Sele river valley. Surv Geophys 23:595–625Google Scholar
  95. Cardinali M, Reichenbach P, Guzzetti F, Ardizzone F, Antonini G, Galli M, Cacciano M, Castellani M, Salvati P (2002) A geomorphological approach to the estimation of landslide hazards and risks in Umbria, Central Italy. Nat Hazards Earth Syst Sci 2:57–72Google Scholar
  96. Carrara A (1983) Multivariate methods for landslide hazard evaluation. Math Geol 15:403–426Google Scholar
  97. Carrara A, Guzzetti F (eds) (1995) Geographical information systems in assessing natural hazards. Kluwer, DordrechtGoogle Scholar
  98. Carrara A, Merenda L (1976) Landslides inventory in northern Calabria, southern Italy. Geol Soc Am Bull 87:1229–1246Google Scholar
  99. Carrara A, Pugliese E, Merenda L (1977) Computer-based data bank and statistical analysis of slope instability phenomena. Z Geomorph NF 21(2):187–222Google Scholar
  100. Carrara A, Catalano E, Sorriso-Valvo M, Really C, Osso I (1978) Digital terrain analysis for land evaluation. Geologia Applicata e Idrogeologia 13:69–127Google Scholar
  101. Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui M, Reichenbach P (1991a) GIS techniques and statistical models in evaluation landslide hazard. Earth Surf Processes Landforms 16:427–445Google Scholar
  102. Carrara A, Cardinali M, Detti R, Guzzeti F, Pasqui V, Reichenbach P (1991b) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Processes Landforms 16:427–445. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 57–77Google Scholar
  103. Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 2:172–183Google Scholar
  104. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 135-175Google Scholar
  105. Carrara A, Crosta G, Frattini P (2003) Geomorphological and historical data in assessing landslide hazard. Earth Surf Processes Landforms 28(10):1125–1142Google Scholar
  106. Carrasco RM, Pedraza J, Martín-Duque JF, Mattera M, Sanz, MA, Bodoque JM (2003) Hazard zoning connected to torrential floods in the Jerte valley (Spain) by using GIS techniques. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):361–381Google Scholar
  107. Casagli N, Farina P, Leva D, Nico G, Tarchi D (2002) Monitoring the Tessina landslide by a ground-based SAR interferometer and assessment of the system accuracy. In: International Geoscience Remote Sensing Symposium (IGARSS) 5:2915–2917Google Scholar
  108. Casagli N, Farina P, Leva D, Nico G, Tarchi D (2003) Ground-based SAR interferometry as a tool for landslide monitoring during emergencies. In: International Geoscience Remote Sensing Symposium (IGARSS) 4:2924–2926Google Scholar
  109. Casale R, Fantechi R, Flageollet JC (eds) (1994). Temporal occurrence and forecasting of landslides in the European Community. Final Report, vol 1, 559 pp, vol 2, pp 565–955, EUR 15805 EN, Programme EPOCH Contract 90 0025, Brussels, BelgiumGoogle Scholar
  110. Castelli M, Bonnard C, Durville JL, Forlati F, Poisel R, Polino R, Prat P, Scavia C (2002) The IMIRILAND project—impact of large landslides in the mountain environment: identification and mitigation of risk. In: Instability-planning and management. Thomas Telford, LondonGoogle Scholar
  111. Castelli M, Amatruda G, Scavia C, Paro L, Forlati E (2004) The IMIRILAND methodology: a proposal for a multidisciplinary risk assessment procedure wlth respect to large landslide. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 229–236Google Scholar
  112. Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66(1–4 special issue):119–131Google Scholar
  113. Cevik E, Topal T (2003) GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environ Geol 44(8):949–962Google Scholar
  114. Chacón J (1994) Zonificación de Riesgos Geodinámicos: Estado del Arte. I Simposio Panamericano de Deslizamientos de tierra (first Panamerican symposium on landslides). Conferencia Relator Sesión 3°. Guayaquil, EcuadorGoogle Scholar
  115. Chacón J (1999) Riesgos Naturales en el borde suroriental de la depresión de Granada. In: Rivas P, Gomez-Caminero R (eds) Ciclos Naturales y Desarrollo Sostenido. Grupo Editorial Universitario, Granada, pp 71–134Google Scholar
  116. Chacón J, Corominas J (eds) (2003) Special issue on Landslides and GIS. Nat Hazards 30(3):263–512Google Scholar
  117. Chacón J, Irigaray C (1992) Metodología para la elaboración de mapas de riesgos de movimientos de ladera. In: III Congreso Geológico de España. Simposios, tomo Salamanca (Spain) vol 2, pp 620–627Google Scholar
  118. Chacón J, Irigaray C (1999a) Landslides: from hazard identification to mitigation of risks. In: Jon Ingleton (ed) Natural disaster management. A presentation to commemorate the international decade for natural disaster reduction. Páginas 61–64. Tudor Rose Holdings Limited, UK, p 320Google Scholar
  119. Chacón J, Irigaray C (1999b) Previsión espacial de movimientos de ladera mediante S.I.G. Los Luis Laín Huerta (ed) Sistemas de Información Geográfica en los Riesgos Naturales y en el Medio Ambiente. ITGE, Madrid, pp 111–123Google Scholar
  120. Chacón J, Irigaray C, Fernández T (1992a) Análisis regional de movimientos de ladera y riesgos derivados mediante sistemas de información geográfica. I Congreso: Los sistemas de información geográfica en la gestión territorial. Asociación Española de Sistemas de Información Geográfica y Territorial, Madrid, pp 355–360Google Scholar
  121. Chacón J, Irigaray C, Fernández T (1992b) Metodología para la cartografía regional de movimientos de ladera y riesgos asociados mediante un Sistema de Información Geográfica. III Simposio Nacional sobre taludes y laderas inestables, La Coruña, vol I, pp 121–133Google Scholar
  122. Chacón J, Méneroud J-P, Irigaray C, Boussouf S, Calvino A (1992c) Análisis comparativo de metodologías para la elaboración de cartografías de exposición a los movimientos de ladera: aplicación al sector de Menton (Francia). III Simposio Nacional sobre taludes y laderas inestables, La Coruña, Spain, vol I, pp 95–106Google Scholar
  123. Chacón J, Irigaray C, Fernández T (1993a) Methodology for large scale landslide hazard mapping in a G.I.S. In: Wagner, Novosad (ed) Landslides. Seventh international conference and field workshop on landslides, Bratislava, Slovakia. In: Landslides. Balkema, Rotterdam, pp 77–82Google Scholar
  124. Chacón J, Irigaray C, Fernández T (1993b) Análisis y cartografía a gran escala de factores condicionantes de movimientos de ladera mediante un S.I.G. V Reunión Nacional de Geología Ambiental y Ordenación del Territorio. Tomo II, Murcia, Spain, pp 585–594Google Scholar
  125. Chacón J, Irigaray C, Fernández T (1994a) Large to middle scale landslides inventory, analysis and mapping with modelling and assessment of derived susceptibility, hazards and risks in a GIS 7th International IAEG Congress, Lisboa, Portugal, vol VI, Balkema, Rotterdam, pp 4669–4678Google Scholar
  126. Chacón J, Irigaray C, Fernández T (1994b) Metodología para el análisis y cartografía de movimientos de ladera y riesgos asociados mediante un SIG. III Congreso AESIG, III-4, Madrid, Spain, pp 1–15Google Scholar
  127. Chacón J, Irigaray C, Fernández T, Boussouf S (1994c) Análisis y cartografía a escalas mediana y grande de movimientos de ladera y riesgos asociados mediante un S.I.G. I Simposio Panamericano de Deslizamientos de tierra (first Panamerican symposium on landslides), Guayaquil, Ecuador, vol I, pp 77–82Google Scholar
  128. Chacón J, Irigaray C, Fernández T (eds) (1996a) Landslides. In: Eight international conference and field workshop on landslides, Granada–Barcelona–Madrid, Spain. Balkema, Rotterdam, p 393Google Scholar
  129. Chacón J, Irigaray C, El Hamdouni R, Fernández T (1996b) From the inventory to the risk analysis: improvements to a large scale G.I.S. method. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rótterdam, pp 335–342Google Scholar
  130. Chacón J, Irigaray C, El Hamdouni R, y Fernández T (1996c) Consideraciones sobre los riesgos derivados de los movimientos del terreno, su variada naturaleza y las dificultades de su evaluación. In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, vol I, Granada, Spain, pp 407–418Google Scholar
  131. Chacón J, Irigaray C, Fernández T, El Hamdouni R, Lamas F (1998) Previsión de zonas inestables en las Cordilleras Béticas: factores determinantes y activadores, inventario de movimientos y análisis de susceptibilidad, peligrosidad y riesgo. I Congreso Andaluz de Carreteras, 10–13, vol II, Granada, Spain, pp 1817–1822Google Scholar
  132. Chacón J, El Hamdouni R, Irigaray C, Delgado A, Reyes E, Fernández T, García AF, Sanz de Galdeano C, y Keller EA (2001) Valores de encajamiento de la red fluvial deducidos a partir del estudio de travertinos del valle de Lecrín y curso bajo del Guadalfeo (SO de Sierra Nevada, Granada). In: Sanz de galdeano C, Peláez A, López AC (eds) La cuenca de Granada: Estructura, Tectónica Activa, Sismicidad, Geomorfología y dataciones existentes. CSIC—Universidad de Granada, Spain, pp 29–39Google Scholar
  133. Chacón J, Irigaray C, Fernández T, El Hamdouni R (2003) Susceptibilidad a los movimientos de ladera en el sector central de la Cordillera Bética. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, Madrid, Spain, serie Medio Ambiente, no. 4, pp 83–96Google Scholar
  134. Chang YS, Park HD (2004) Development of a web-based geographic information system for the management of borehole and geological data. Comput Geosci 30:887–897Google Scholar
  135. Chardon AC (1999) A geographic approach of the global vulnerability in urban area: case of Manizales, Colombian Andes. GeoJournal 49:197–212Google Scholar
  136. Chau KT, Lo KH (2004) Hazard assessment of debris flows for Leung King Estate of Hong Kong incorporating GIS with numerical simulation. Nat Hazards Earth Syst Sci 4(1):103–116Google Scholar
  137. Chau KT, Tang YF, Wong RHC (2004a) GIS based rockfall hazard map for Hong Kong. Paper 3B13 SINOROCK2004 Symposium. Int J Rock Mech Min Sci 41(3), CD-ROMGoogle Scholar
  138. Chau KT, Sze YL, Fung MK, Wong WY, Fong EL, Chan LCP (2004b) Landslide hazard analysis for Hong Kong using landslide inventory and GIS. Comput Geosci 30:429–443Google Scholar
  139. Chen C-Y, Chen T-C, Yu F-C, Hung F-Y (2004a) A landslide dam breach induced debris flow—a case study on downstream hazard areas delineation. Environ Geol:20, DOI 10.1007/s00254-004-1137-6Google Scholar
  140. Chen KS, Wei C, Chang SC (2004b) Locating landslide using multi-temporal satellite images. Adv Space Res 33:296–301Google Scholar
  141. Chi KH, Park NW, Lee K (2002a) Identification of landslide area using remote sensing data and quantitative assessment of landslide hazard. In: IGARSS2002: IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: integrating our view of the planet, New York, USA, pp 2856–2858Google Scholar
  142. Chi KH, Park NW, Chung CF (2002b) Fuzzy logic integration for landslide hazard mapping using spatial data from Boeun, Korea. In: Symposium of geospatial theory, processing and applications, Ottawa, 6 ppGoogle Scholar
  143. Chleborad AF (2000) Preliminary method for anticipating the occurrence of precipitation-induced landslides in Seattle, Washington. US Geological Survey Open File Report 00-469, Department of Interior, USA, p 29Google Scholar
  144. Chowdhury RN (1984) Recent developments in landslide studies: probabilistic methods-state-of-art-report. In: Proceedings of the IVth ISL, Toronto, vol 1, pp 209–228Google Scholar
  145. Chowdhury RN (1996) Aspects of risk assessment for landslides. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, A.A. Balkema, Rotterdam, vol 1, pp 183–189Google Scholar
  146. Chowdhury R, Flentje P (1996) Geological and lands instability mapping using G.I.S. package as a building block for the development of a risk assessment procedure, vol 1, pp 177–182. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, A.A. Balkema, Rotterdam, vol 1, pp 263–269Google Scholar
  147. Chowdhury R, Flentje P (1998) Effective urban landslide hazard assessment. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 871–877Google Scholar
  148. Chowdhury R, Flentje P (2003) Role of slope reliability analysis in landslide risk management. Bull Eng Geol Environ 62:41–46Google Scholar
  149. Chung CF, Fabbri AG (1993) Representation of geoscience data for information integration. J Non-Renewable Resour 2(2):122–139Google Scholar
  150. Chung CF, Fabbri AG (1998) Three Bayesian prediction models for landslide hazard. In: Buscianti (ed) Proceedings of the International Association of Mathematical Geology, Ischia, Italy, pp 204–211Google Scholar
  151. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sen 65(12):1388–1399Google Scholar
  152. Chung CF, Fabbri AG (2001) Prediction models for landslide hazard using fuzzi set approach. In: Marchetti M, Rivas V (eds) Geomorphology and environmental impact assessment. A.A. Balkema, Rotterdam, pp 31–47Google Scholar
  153. Chung CF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):451–472Google Scholar
  154. Chung CF, Fabbri AG, van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, pp 135–175Google Scholar
  155. Clerici A, Perego S, Tellini C, Vescovi P (2002) A procedure for landslide susceptibility zonation by the conditional analysis method. Geomorphology 48:349–364Google Scholar
  156. Codebo L, Enea CR, Del Monaco G, Margottini C (2000) Landslide susceptibility in the Cardoso Slope (Versilla-Italy). Consequences of the flash flood of 19th June 1996. In: Landslides in research, theory and practice. Thomas Telford, London, pp 293–298Google Scholar
  157. Coe JA, Michael JA, Crovelli RA, Zavage WA (2000) Preliminary map showing landslides densities, mean recurrence intervals, and exceedance probabilities as determined from historic records, Seattle, Washington. USGS Open-File report 00-303 on line edition, 12 pp, 2 tables, 10 figures and 1 map. US Department of Interior, USAGoogle Scholar
  158. Coe JA, Godt JW, Baum RL, Bucknam RC, Michael A (2004) Landslide susceptibility from topography in Guatemala. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 69–78Google Scholar
  159. Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14Google Scholar
  160. Collins TK (1987) Discussion to DeGraff JV (1985) Using isopleth maps on landslide deposits as a tool in timber sale planning. Bull Assoc Eng Geol 24(1):117–120Google Scholar
  161. Collotta T, Saggio G (2004) Landslides hazard curves method: practical suggestions. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 185–190Google Scholar
  162. Connell LD, Jayatilaka CJ, Nathan R (2001) Modelling flow and transport irrigation catchments, spatial application of subcatchment model. Water Resour Res 37(4):965–977Google Scholar
  163. Cook JR, McGown A, Hurley G, Choy LE (1998) The role of engineering geology in the hazard zonation of a Malaysian highway. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 221–229Google Scholar
  164. Corominas J, Santacana N (2003) Stability analysis of the Vallcebre translational slide, Eastern Pyrenees (Spain) by means of a GIS. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):473–485Google Scholar
  165. Corominas J, Copons R, Vilaplana JM, Altimir J, Amigó J (2003) Integrated landslide susceptibility analysis and hazard assessment in the principality of Andorra. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):421–435Google Scholar
  166. Corominas J, Moya J, Masachs I, Baeza C, Hurlimann M (2004) Reconstructing recent activity of Pyrenean landslides by means of dendrogeomorphological techniques. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 363–371Google Scholar
  167. Cotecchia V (1978) Systematic reconnaissance, mapping and registration of slope movements. Bull Int Assoc Eng Geol 17:5–37Google Scholar
  168. Cross M (1998) Landslide susceptibility mapping using the matrix assessment approach: a Derbyshire case study. In Maund JG, Eddlestonb M (eds) Geohazards in engineering geology. The Geological Society, London, Engineering Geology Special Publications 15, pp 247–261Google Scholar
  169. Cross M (2002) Landslide susceptibility maps using the matrix assessment approach: a Derbyshire case study. In Griffiths JS (ed) Mapping in Engineering Geology. The Geological Society London, Key Issues in Earth Sciences 1:267–282Google Scholar
  170. Crovelli RA (2000) Probability models for estimation of number and costs of landslides. USGS Open-File Report 00-249, US Department of Interior, USGS, 18 ppGoogle Scholar
  171. Crozier MJ (1986) Landslides: causes, consequences and environment. Surry Hills, Croom Helm Pub, London, p 192Google Scholar
  172. Cruden DM (1991) A simple definition of a landslide. Bull Int Assoc Eng Geol 43:27–29Google Scholar
  173. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides—investigation and mitigation. Special Report 247. Transportation Research Board, Washington, pp 36–75Google Scholar
  174. Culshaw M (2004) The first engineering geological publication in the UK? Quart J Eng Geol Hydrogeol 37:227–231Google Scholar
  175. Czirók A, Somfai KE, Vicsek T (1997) Fractal scaling and power-law landslide distribution in a micromodel of geomorphological evolution. Geol Rundsch 86:525–530Google Scholar
  176. Dai FC, Lee CF (2001) Frequency–volume relation and prediction of rainfall-induced landslides. Eng Geol 59(3/4):253–266Google Scholar
  177. Dai FC, Lee CF (2002a) Landslide characteristics and slope instability modelling using GIS, Lantau Island, Hong Kong. Geomorphology 42(3–4):213–228Google Scholar
  178. Dai FC, Lee CF (2002b) Landslide on natural terrain—physical characteristics and susceptibility mapping in Hong Kong. Mt Res Dev 22(1):40–47Google Scholar
  179. Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Processes Landforms 28:527–545Google Scholar
  180. Dai FC, Lee CF, Li J, Xu ZW (2000) Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environ Geol 40(3):381–391Google Scholar
  181. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87Google Scholar
  182. Dai FC, Lee CF, Wang SJ (2003) Characterisation of rainfall-induced landslides. Int J Remote Sens 24(23):4817–4834Google Scholar
  183. Davies WE (1974a) Landslide susceptibility map of part of the Bridgeville 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-274, scale 1:24,000, 8 ppGoogle Scholar
  184. Davies WE (1974b) Landslide susceptibility map of part of the Canonsburg 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-276, scale 1:24,000, 8 ppGoogle Scholar
  185. Davies WE (1974c) Landslide susceptibility map of part of the Donora 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-277, scale 1:24,000, 8 ppGoogle Scholar
  186. Davies WE (1974d) Landslide susceptibility map of part of the Freeport 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-278, scale 1:24,000, 8 ppGoogle Scholar
  187. Davies WE (1974e) Landslide susceptibility map of the McKeesport 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-280, scale 1:24,000, 8 ppGoogle Scholar
  188. Davies WE (1974f) Landslide susceptibility map of the Monongahela 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-281, scale 1:24,000, 8 ppGoogle Scholar
  189. Davies WE (1974g) Landslide susceptibility map of part of the New Kensington East 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-283, scale 1:24,000, 8 ppGoogle Scholar
  190. Davies WE (1974h) Landslide susceptibility map of part of the New Kensington West 7-1/2 minute quadrangle, Allegheny County and vicinity. US Geological Survey Open-File Report 74-284, scale 1:24,0000, 8 ppGoogle Scholar
  191. Davies WE (1974i) Landslide susceptibility map of the Braddock 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-273, scale 1:24,000, 8 ppGoogle Scholar
  192. Davies WE (1974j) Landslide susceptibility map of part of the Curtisville 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-276, scale 1:24,000, 8 ppGoogle Scholar
  193. Davis TJ, Keller CP (1997a) Modelling and visualizing multiple spatial uncertainties. Comput Geosci 23(4):397–408Google Scholar
  194. Davis TJ, Keller CP (1997b) Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. Int J Geograph Inf Sys 11(5):409–434Google Scholar
  195. Davis AM, Mason PJ, Mc Moore JM (2000) Three dimensional visualisation of landslides in SE Spain using a digital elevation model (DEM) and orthophotography. In: Landslides in research, theory and practice. Thomas Telford, London, pp 403–408Google Scholar
  196. Day FC, Lee CF (2001) Terrain-based mapping of landslide susceptibility using a geographical information system: a case study. Can Geotech J 38(5):911–923Google Scholar
  197. De Araújo PC, Riedel PS, Santoro J, Vedovello R, Tominaga LK, Brollo MJ, Tavares R (2004) Analysis of susceptibility to gravitational mass flows based on conditional probability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 251–256Google Scholar
  198. Dearman WR (1991) Engineering geological mapping. Butterworth-Heinemann, OxfordGoogle Scholar
  199. DeGraff JV (1985) Using isopleth maps of landslide deposits as a tool in timber sale planning. Bull Assoc Eng Geol XXII 4:445–453Google Scholar
  200. DeGraff JV (1987) Reply to Collins TK (1987) Discussion Bull Assoc Eng Geol 24(1):121–124Google Scholar
  201. DeGraff JV, Canuti P (1988) Using isopleth mapping to evaluate landslide activity in relation to agricultural practice. Bull Int Assoc Eng Geol 38:61–71Google Scholar
  202. DeGraff JV, Romesburg HC (1980) Regional landslide—susceptibility assessment for wildland management: a matrix approach. In: Coates DR, Vitek JD (eds) Chap. 19, pp 401–414Google Scholar
  203. DeGraff J, Brabb EE, King AP (1991) Landslide hazard assessment. In: Primer on natural hazards management in integrated regional development planning. Department of Regional Development and Environment. General Secretariat, OAS, Washington, DC, Chap. 10, 32 ppGoogle Scholar
  204. De la Ville N, Chumaceiro Diaz A, Ramirez D (2002) Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustain 4:221–229Google Scholar
  205. Del Gaudio V, Wasowski J (2004) Time probabilistic evaluation of seismically induced landslide hazard in Irpinia (Southern Italy). Soil Dyn Earthquake Eng 24:915–928Google Scholar
  206. Delmonaco G, Margottini C, Marhni G, Paolini S, Puglisi C, Falconi V, Spizzichino D (2004) Slope dynamics acting on Villa del Casale (Piazza Armerina, Sicily). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 357–362Google Scholar
  207. Dempster A (1968) A generalization of Bayesian inference. J Roy Stat Soc, Ser B 30:205–247Google Scholar
  208. Den J (1982) Control problems of grey systems. System and Control Letters 1(4):228–294Google Scholar
  209. Dhakal AS, Amada T, Aniya M (1999) Landslide hazard mapping and the application of GIS in the Kulekhani watershed, Nepal. Mt Res Dev 19(1):3–16Google Scholar
  210. Dhakal AS, Amada T, Aniya M (2000a) Landslide hazard mapping and its evaluation using GIS: an investigation of sampling schemes for a grid-cell based quantitative method. Photogrammetric Eng Remote Sens 66(8):981–989Google Scholar
  211. Dhakal AS, Amada T, Aniya M (2000b) Databases and geographic information systems for medium scale landslide hazard evaluation: an example from typical mountain watershed in Nepal. In: Landslide in research, theory and practice. Thomas Telford, London, pp 457–462Google Scholar
  212. Dias EC, Zuquette LV (2004) Methodology adopted for probabilistic assessment of landslides in Ouro Preto, Brazil. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 287–292Google Scholar
  213. Dietrich WE, Montgomery DR (1998) A digital terrain model for mapping shallow landslide potential. Technical report NCASI. Downloads from http://socrates. berkeley.edu/~geomorph/shalstab/
  214. Dikau R, Brunsden D, Schrott L, Ibsen ML (1996a) Landslide recognition, identification, movement and causes. Wiley, ChichesterGoogle Scholar
  215. Dikau R, Cavallin A, Jager S (1996b) Databases and GIS for landslide research in Europe. Geomorphology 15(3–4):227–239Google Scholar
  216. Dobrev ND, Boykova AD (1998) Landslide hazard assessment in tectonic active grabens. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2107–2112Google Scholar
  217. Dobrovolny E (1971) Landslide susceptibility in and near anchorage as interpreted from topographic and geologic maps, in The great Alaska earthquake of 1964–Geology volume. Publication 1603. U.S. Geological Survey Open-File Report 86-329, National Research Council, Committee on the Alaska Earthquake, National Academy of Sciences, USA, pp 735–745Google Scholar
  218. Donati L, Turrini MC (2002) An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: application to an area of the Appenines (Valnerina; Perugia, Italy). Eng Geol 63:277–289Google Scholar
  219. Drennon CB, Schleining WG (1975) Landslide hazard mapping in a shoestring. J Surv Mapping Div—ASCE 101(1):107–114Google Scholar
  220. Dymon JR, Jessen MR, Lovell LR (1999) Computer simulation of shallow landsliding in New Zealand hill country. IAG 1(2):122–131Google Scholar
  221. Einstein HH (1988) Special lecture: landslide risk assessment procedure. In: Proceedings of the Vth ISL Lausanne, vol 2, pp 1075–1090Google Scholar
  222. El Hamdouni R (2001) Estudio de movimientos de ladera en la cuenca del río Ízbor mediante un SIG: contribución al conocimiento de la relación entre tectónic activa e inestabilidad de vertientes. 429 pp and 10 maps 1:25.000, Unpublished PhD thesis. Department of Civil Engineering. University of Granada, SpainGoogle Scholar
  223. El Hamdouni R, Irigaray C, Chacón T, y Fernández T (1996a) Los movimientos de ladera de la cuenca del río Albuñuelas (Granada, España). In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada. Spain, vol I, pp 443–453Google Scholar
  224. El Hamdouni R, Irigaray C, Chacón J, Fernández T (1996b) Landslides inventory and determining factors in the Albuñuelas river basin (Granada, Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 21–30Google Scholar
  225. El Hamdouni R, Irigaray C, Pérez J, Fernández T, Chacón J (1997a) Exposición a riesgos derivados de los movimientos de ladera en el entorno de Albuñuelas (Granada): incidencia de las lluvias de Noviembre a Enero de 1996/97. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada. Spain, vol I, pp 15–26Google Scholar
  226. El Hamdouni R, Irigaray C, Pérez J, Fernández T, Sanz de Galdeano C, Chacón J (1997b) Inventario de movimientos de ladera en el entorno del embalse de Béznar (Granada. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada. Spain, vol II, pp 731–740Google Scholar
  227. El Hamdouni R, Irigaray C, Chacón J, Sanz de Galdeano C, Fernández T (2001) Movimientos de ladera y tectónica activa en la cuenca del río Izbor (Granada). V Simposio nacional sobre taludes y laderas inestables, Madrid, Spain, vol III, pp 1231–1240Google Scholar
  228. El Hamdouni R, Irigaray C, Fernández T, Sanz de Galdeano C, Chacón J (2003) Susceptibilidad a los movimientos de ladera en el borde S.O. de Sierra Nevada (España): Implicación de la tectónica activa como factor determinante. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, Madrid, Spain, pp 155–168. serie Medio Ambiente, No. 4Google Scholar
  229. El Hamdouni, Irigaray C, Fernández T, Sanz de Galdeano C, Chacón J (2000) Slope movements and active tectonics in the Izbor River basin (Granada, Spain). In: Bromhead E, Dixon N, Ibson ML (eds) Landslides in research, theory and practice, vol I, Thomas Telford, London, pp. 501–506Google Scholar
  230. Ercanoglu M, Gokceoglu C (2004) Use of fuzzi relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Eng Geol 75:229–250Google Scholar
  231. Ercanoglu M, Gokceoglu C, Van Asch THWJ (2004) Landslide susceptibility Zoning North of Yenice (NW Turkey) by multivariate statistical techniques. Nat Hazards 32:1–23Google Scholar
  232. Erley D, Köckelman WJ (1981) Reducing landslide hazards: a guide for planners. Planning Advisory Report 359. American Planning Association, Chicago, USA, 29 ppGoogle Scholar
  233. Ermini L, Catani F, Casagli N (2005) Artificial neural networks applied to landslide susceptibility assessment. Geomorphology 66:327–343Google Scholar
  234. Esaki T, Xie MW, Zhou GY, Mitani Y (2001) Monte Carlo method for locating and evaluating 3D critical slope slip based on GIS Database. In: Sijing W, Bingjunm F, Zhongkui L (eds) Frontiers on rock mechanics and sustainable development in 21st century. AA Balkema, Rotterdam, pp 17–21Google Scholar
  235. Evans NC, King JP (1998) The natural terrain landslide study: debris avalanche susceptibility. Technical Note TN 1/98. Planning Division, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, 96 ppGoogle Scholar
  236. Evans NC, Huang SW, King JP (1997) The natural terrain landslide study phases I and II. Special Project Report, SPR 5/97. Planning Division, Geotechnical Engineering Office, Civil Engineering Department, Hong Kong, 119 ppGoogle Scholar
  237. Evans NC, King JP, Woods NW (1998) Natural terrain landslide hazards in Hong Kong. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, Canada. A.A. Balkema, Rotterdam, pp 1003–1010Google Scholar
  238. Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Eng Geol 61(1):29–51Google Scholar
  239. Eyers R, Moore J, Hervás J, Liu JG (1998) Integrated use of Landsat TM and SPOT panchromatic imagery for landslide mapping: case histories from southeast Spain. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Engineering Geology Special Publication 15. Geological Society, London, pp 133–140Google Scholar
  240. Fabbri AG, Chung CJ (1996) Predictive spatial data analysis in the geosciences. In: Unwinn D, Fisher M, Scholten HJ (eds) Spatial analytical perspectives on GIS. Taylor & Francis Group, London, 271 ppGoogle Scholar
  241. Fabbri AG, Chung CJ (2003) Is prediction of future landslides possible with a GIS? In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):487–499Google Scholar
  242. Fall M, Azzam R (1998) Application de la géologie de l’ingenieur et de SIG à l’étude de la stabilité des versants côtier, Dakar, Senegal. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1011–1018Google Scholar
  243. Family F, Vicsek T (eds) (1991) Dynamic of fractal surfaces. World Scientific, SingaporeGoogle Scholar
  244. Favre JL, Resig S, Leroi E (2000) Conditional landslide hazard mapping. In: Melchers RE, Stewart MG (eds) Applications of statistics and probability—civil engineering and risk analysis. A.A. Balkema, Rotterdam, pp 255–262Google Scholar
  245. Fell R (1992) Some landslide risk zoning schemes in use in Eastern Australua and their application. In: Proceedings of the VIth Australian–New Zealand conference on geomechanics society, Christchurch, NZ, pp 505–512Google Scholar
  246. Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272Google Scholar
  247. Fell R, Hartford D (1997) Landslide risk assessment. In: Cruden D, Fell R (eds) Landslide risk assessment. Proceedings of the international workshop on landslide risk assessment, Honolulú. Balkema, Rotterdam, pp 51–110Google Scholar
  248. Fell R (2000) Landslide risk management concepts and guidelines—Australian Geomechanics Society Sub-Committee on Landslide Risk Management In: Landslides, International Union of Geological Sciences, pp. 51–93Google Scholar
  249. Fernández T (2001) Cartografía, análisis y modelado de la susceptibilidad a los movimientos de ladera en macizos rocosos mediante SIG: aplicación a diversos sectores del Sur de la provincia de Granada. 648 pp, 9 maps. Unpublished PhD Thesis. University of Granada, SpainGoogle Scholar
  250. Fernández T, Irigaray C, Chacón J (1994) Large scale analysis and mapping of determinant factors of landsliding affecting rock massifs in the eastern Costa del Sol (Granada, Spain) in a GIS. In: Oliveira, Rodriguez, Coelho, Cunha (eds) 7th International IAEG Congress, Lisboa, Portugal, vol VI. Balkema, Rotterdam, pp 4649–4658Google Scholar
  251. Fernández T, Irigaray C, y Chacón J (1996a) Inventory and analysis of landslides determinant factors in Los Guajares Mountains, Granada (Southern Spain). In: Senneset (ed) Landslides, ISL’96, Trondheim, Norway, vol 3. Balkema, Rótterdam, pp 1891–1896Google Scholar
  252. Fernández T, Irigaray C, y Chacón J (1996b) G.I.S. Analysis and mapping of landslides determinant factors in the Contraviesa area (Granada, Southern Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 141–151Google Scholar
  253. Fernández T, Irigaray C, y Chacón J (1996c) Inventario de movimientos de ladera en la vertiente Norte de la Contraviesa (Granada) mediante un S.I.G. In: Chacón J, y Rosúa JL (eds) 1a Conferencia internacional: Sierra Nevada Conservación y Desarrollo Sostenible, Granada, Spain, vol I, pp 297–317Google Scholar
  254. Fernández T, Irigaray C, y Chacón J (1996d) Inventario de movimientos de ladera en el borde Noreste de la Sierra de los Guájares (Granada) mediante un S.I.G. In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada, Spain, vol I, pp 419–441Google Scholar
  255. Fernández T, Irigaray C, El Hamdouni R, Chacón J (1997a) Validación de un método de cartografía de movimientos de ladera y susceptibilidad mediante un S.I.G. en un sector de las cuencas de los ríos Guadalfeo e Izbor (Granada). In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol I, pp 51–63Google Scholar
  256. Fernández T, Irigaray C, y Chacón J (1997b) Aplicación de un Sistema de Información Geográfica a la cartografía, análisis y modelización de movimientos de ladera, Madrid. Spain. Mapping no. 35, pp 44–49Google Scholar
  257. Fernández T, Brabb E, Delgado F, Martin-Algarra A, Irigaray C, Estévez A, Chacón Montero J (1997c) Rasgos geológicos y movimientos de ladera en el sector Izbor-Velez Benaudalla de la cuenca del río Guadalfeo (Granada). In: Alonso E, Corominas J, Chacón J, Oteo, C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol II, pp 795–808Google Scholar
  258. Fernández T, Irigaray C, El Hamdouni R, Martínez, C, Quesada D, Chacón J (1998) Previsión de los movimientos de ladera asociados a las lluvias del invierno 1996–97 en el sector de Izbor-Vélez de Benaudalla (Granada) en relación con la susceptibilidad del terreno. I Congreso Andaluz de Carreteras 10–13, Granada, Spain, vol II, pp 1823–1828Google Scholar
  259. Fernández T, Irigaray C, El Hamdouni R, Chacón J (2000) Metodología para la elaboración de cartografía de susceptibilidad a los movimientos de ladera mediante SIG”. VI Congreso Nacional de Topografía y Cartografía TOPCART 2000, Madrid, Spain, pp 610–620Google Scholar
  260. Fernández T, Irigaray C, El Hamdouni R, Chacón J (2003) Methodology for landslide susceptibility mapping by means of a GIS: application to the Contraviesa Area (Granada, Spain). In: Chacón J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):297–308Google Scholar
  261. Fernández T, Irigaray C, El Hamdouni R, y Chacón J (2004a) Diseño gráfico de un mapa de susceptibilidad a los movimientos de ladera. Actas TopCart 2004: VIII Congreso Nacional de Topografía y Cartografía. Madrid Edición CD, 12 ppGoogle Scholar
  262. Fernández T, Irigaray C, El Hamdouni R, y Chacón J (2004b) Las pendientes naturales de los macizos rocosos del Sur de la provincia de Granada. Actas XI Congreso deMétodos Cuantitativos, Sistemas de Información Geográfica y Teledetección. Murcia, SpainGoogle Scholar
  263. Fernández-Steeger TM, Rohn J, Czurda K (2002) Identification of landslide areas with neural nets for hazard analysis. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 163–168Google Scholar
  264. Ferrier N, Emdad Haque C (2003) Hazards risk management methodology for emergency managers: a standardized framework for application. Nat Hazards 28:271–290Google Scholar
  265. Flageollet JC (1994) The time dimension in the mapping of earth movements. In: Casale R, Fantechi R, Flageollet JC (eds) Temporal occurrence and forecasting of landslides in the European community. Final Report, EUR 15805 EN, Programme EPOCH Contract 90 0025, Brussels, Belgium, vol 1, pp 7–70Google Scholar
  266. Fookes PG (1997) Geology for engineers: the geological model, prediction and performance. Quart J Eng Geol 30:293–424Google Scholar
  267. Forlati F, Ramasco M, Susella GF (2004) Landslide hazard management in a densely populated Alpine region. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 215–220Google Scholar
  268. Foxx M (1984) Slope failures in the Felton quadrangle, 1981–1983 and analysis of factors that control slope failure susceptibility of the Monterey Formation. Santa Cruz, University of California, Masters thesisGoogle Scholar
  269. Franciss FO (2004) Landslide hazard assessment on hilly terrain. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 143–150Google Scholar
  270. Franks CAM, Koor NP, Campbell SDG (1998) An integrated approach to the assessment of slope stability in urban areas in Hong Kong using thematic maps. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1103–1111Google Scholar
  271. Fransen PJB, Phillips CJ, Fahey BD (2001) Forest road erosion in New Zealand: overview. Earth Surf Processes Landforms 26(2):165–174Google Scholar
  272. Frattini P, Crosta GB, Fusi N, Dal Negro P (2004) Shallow landslides in pyroclastic soils: a distributed modelling approach for hazard assessment. Eng Geol 73(3–4):277–295Google Scholar
  273. Garcia RAC, Zêzere JL (2004) Abadia Basin (Torres Vedras, Portugal) a case study of landslide susceptibility assessment and validation. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 137–146Google Scholar
  274. García AF, Zhu Z, Ku TL, Sanz de Galdeano C, Chadwick OA, Chacón J (2003) Tectonically driven landscape development within the eastern Alpujarran Corridor, Betic Cordillera, SE Spain (Almería). Geomorphology 50:83–110Google Scholar
  275. García AF, Zhu Z, Ku TL, Chadwick OA, Chacón (2004) An incision wave in the geologic record, Alpujarran Corridor, southern Spain (Almería). Geomorphology 60(2004):37–72Google Scholar
  276. Garland GG, Olivier MJ (1993) Predicting landslides from rainfall in a humid, subtropical region. Geomorphology 8:165–173Google Scholar
  277. Giafferi JL (1998) L’aléa movement de terrain dans les études de dangers des barrages. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver, A.A. Balkema, Rotterdam, pp 1079–1087Google Scholar
  278. Giardino M, Giordan D, Ambroglio S (2004) GIS technologies for data collection, management and visualization of large slope instabilities: two application in the Western Alps. Nat Hazards Earth Syst Sci 4(2):197–211Google Scholar
  279. Giasi CI, Masi P, Cherubini C (2003) Probabilistic and fuzzy reliability analysis of a sample slope near Aliano. Eng Geol, 67: 391–402Google Scholar
  280. Glade T (2001) Landslide hazard assessment and historical landslide data—an inseparable couple? In: Glade T, Albini P, Frances F (eds) Use of historic data in natural hazard assessments: advances in natural and technological hazards research 17:153–168Google Scholar
  281. Glade T (2002) Ranging scales in spatial landslide hazard and risk analysis. In: Brebbia CA (ed) Risk analysis III, management information systems, vol 5. WIT Press, Ashurst, pp 719–728Google Scholar
  282. Glade T, Crozier M, Smith P (2000) Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”. Pure Appl Geophys 157:1059–1079Google Scholar
  283. Gokceoglu C, Aksoy H (1996) Landslide susceptibility mapping of the slopes in the residual soils of the Mengen region (Turkey) by deterministic stability analyses and image processing techniques. Eng Geol 44(1–4):147–161Google Scholar
  284. Goltz C (1996) Multifractal and entropic properties of landslides in Japan. Geol Rundschau (Hist Arch IJ Earth Sci) 85(1):71–84Google Scholar
  285. Gómez H, Kavzoglu T (2005) Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Eng Geol 78:11–27Google Scholar
  286. Gómez H, Bradshaw RP, Mather PM (2000) Monitoring the distribution of shallow landslide-prone areas using remote sensing, DTM and GIS: a case study from the tropical Andes of Venezuela. In: Casonova JL (ed) Remote sensing in the 21st century: economic and environmental applications, Valladolid, Spain. A.A. Balkema, RotterdamGoogle Scholar
  287. Gomez B, Page M, Bak P, Trustum N (2002) Self-organized criticality in layered, lacustrine sediments formed by landsliding. Geol Soc Am Bull 30(6):519–522Google Scholar
  288. Gorsevski PV, Gessler PE, Jankowski P (2003) Integrating a fuzzi k-means classification and a Bayesian approach for spatial prediction of landslide hazard. J Geograph Syst 5:223–251Google Scholar
  289. Gostelow TP, Gibson JR (1995) CORINE land cover data: its application to regional landslide susceptibility mapping in Basilicata, Italy, using GIS. In: Proceedings of the conference on vegetation and slopes: stabilisation, protection and ecology, Oxford, pp 222–237Google Scholar
  290. Griffith JS (compiler) (2001) Land surface evaluation for engineering practice. Engineering Geology Special Publication 18. The Geological Society, LondonGoogle Scholar
  291. Griffith JS (compiler) (2002) Mapping in engineering geology. Key issues in earth sciences, vol 1. The Geological Society, London, 287 ppGoogle Scholar
  292. Griffiths JS, Matherm AE, Hart AB (2002) Landslide susceptibility in the Rios Aguas catchment, SE Spain. Quart J Eng Geol Hydrogeol 35(1):9–17CrossRefGoogle Scholar
  293. Gritzner ML, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 37(1–2):149–165Google Scholar
  294. Guidicini G, Iwasa OY (1977) Tentative correlation between rainfall and landslide in a humid, tropical environment. Bull Int Assoc Eng Geol 16:13–18Google Scholar
  295. Günther A, Carstensen A, Pohl W (2002) GIS application in slope stability assessment. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 175–187Google Scholar
  296. Günther A, Carstensen A, Pohl W (2004) Automated sliding susceptibility mapping of rock slopes. Nat Hazard Earth Syst Sci 4:95–102Google Scholar
  297. Gutenberg B, Richter CF (1954) Seismicity of the Earth and associated phenomenon. Princenton University Press, USAGoogle Scholar
  298. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58:89–107Google Scholar
  299. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4(2):213–232Google Scholar
  300. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216Google Scholar
  301. Guzzetti F, Cardinali M, Reinchenbach P, Carrara A (2000) Comparing landslide maps: a case study in the Upper River Basin, Central Italy. Environ Manage 25(3):247–263Google Scholar
  302. Guzzetti F, Malamud BD, Turcotte DL, Reichenbach P (2002) Power-law correlations of landslide areas in central Italy. Earth Planet Sci Lett 195:169–183Google Scholar
  303. Guzzetti F, Reichenbach P, Cardinali M, Ardizzone F, Galli M (2003a) The impact of landslides in the Umbria region, central Italy. Nat Hazards Earth Syst Sci 3:469–486Google Scholar
  304. Guzzetti F, Reichenbach P, Wieczorek GF (2003b) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503Google Scholar
  305. Guzzetti F, Reichenbach P, Ghigi S (2004) Rockfall hazard and risk assessment along a transportation corridor in the Nera Valley, Central Italy. Environ Manage 34(2):191–208Google Scholar
  306. Haigh MJ, Rawat JS, Bartarya SK (1988) Entropy minimizing landslide systems. Curr Sci 57(18):1000–1002Google Scholar
  307. Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, pp 523–602Google Scholar
  308. Harp EL, Reid ME, Michael JA (2004) Hazard analysis of landslides triggered by Typhoon Chata’an on July 2, 2002, in Chuuk State, Federated States of Micronesia. US Geological Survey Open-File Report 2004-1348. US Department of Interior, Science for a Changing World, USGS, 22 ppGoogle Scholar
  309. Hartlen J, Viberg L (1988) General report: evaluation of landslide hazard. In: Proceedings of the Vth ISL, Lausanne, vol 2, pp 1037–1057Google Scholar
  310. Hayne MC, Gordon D (2001) Regional landslide hazard estimation, a GIS/decision tree analysis: Southeast Queensland, Australia. In: Ho KKS, Li KS (eds) Geotechnical engineering meeting society’s needs, proceedings, Hong Kong, China, pp 115–121Google Scholar
  311. He YP, Xie H, Cui P, Wei FQ, Zhong DL, Gardner JS (2003) GIS-based mapping and zonation of debris flows in Xiaojiang Basin, southwestern China. Environ Geol 45:286–293Google Scholar
  312. Heckerman D (1986) Probabilistic interpretation of MYCIN’s certainty factor. In: Kanal LN, Lemmer JF (eds) Uncertainty in artificial intelligence. Elsevier, New York, pp 298–311Google Scholar
  313. Hergarten S (2003) Landslides, sandpiles, and self-organized criticality. Nat Hazards Earth Syst Sci 3:505–514Google Scholar
  314. Hervás J, Rosin PL (1996) Landslide mapping by textural analysis of ATM data. In: Proceedings of the 11th thematic conference on applied geologic remote sensing, Las Vegas, Nevada, Michigan, USA, vol 2, pp 394–402Google Scholar
  315. Hervás J, Rosin PL, Fernández-Renau A, Gómez JA, León C (1996) Use of airborne multispectral imagery for mapping landslides in Los Vélez district (south-eastern Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 353–362Google Scholar
  316. Highland LM (1997) Landslide hazard and risk: current and future directions for the United Stated Geological Survey’s landslide Program. In: Cruden DM, Fell R (eds) Landslide risk assessment. International Workshop Risk Assessment, IUGS Working Group Landslides, Honolulu, Hawaii, USA, pp 207–213Google Scholar
  317. Hines JW (1997) Fuzzy and neural approaches in engineering. Wiley, New York, 210 ppGoogle Scholar
  318. Hinojosa JA, Leon CO (1978) Unstable soil mapping in Spain. In: Proceedings of 3rd International Cong. IAEG, Madrid, section I, (I), pp. 217–227Google Scholar
  319. Hiura H, Fukuoka H (1993) Fractal structure of spatial distribution of landslides in Hokkaido Island, Japan. In: Novosad S, Wagner P (eds) Landslides. Proceedings of the 7th I.C.F.L. Bratislava (Eslovakia Rep.). Balkema, Rotterdam, pp 29–34Google Scholar
  320. Hiura H, Fukuoka H (1996) An analysis of the transition of the distribution of the shallow slides in use of the fractal dimension and the Weibull distribution function. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Proceedings of the 8th I.C.F.L. Granada (Spain). Balkema, Rotterdam, pp 363–372Google Scholar
  321. HMSO (1996) Landslide investigation and management in Great Britain: a guide for planners and developers. Department of the Environment, London, 120 ppGoogle Scholar
  322. Ho CL, Miles SB (1997) Deterministic zonation of seismic slope instability: an application of GIS. In: Frost JD (ed) Spatial analysis in soil dynamics and earthquake engineering. Geotechnical special publication 67, ASCE, New York, pp 87–102Google Scholar
  323. Hoek E (2002) Practical rock engineering. 312 pp. Online free download from http://www.rocscience.com /hoek/PracticalRockEngineering.asp
  324. Hofmeister RJ, Miller DJ (2003) GIS-based modeling of debris-flow initiation, transport and deposition zones for regional hazard assessments in western Oregon, USA. In: Rickenman D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. MillPress Science, Rotterdam, pp 1141–1149Google Scholar
  325. Hollestein K (2005) Reconsidering the risk assessment concept: standardizing the impact description as a building block for vulnerability assessment. Nat Hazards Earth Syst Sci 5:301–307Google Scholar
  326. Hroch Z, Krycl P, Sebesta J (2002) Landslide hazards in North Bohemia. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 207–212Google Scholar
  327. Humbert M (1977) La cartographie ZERMOS. Modalités d´établissement des cartes des zones esposes à des risques liés aux mouvements du sol et du sous-sol. Bull Bur Rech Geol Min III (1–2):5–8Google Scholar
  328. Hungr O (1997) Some methods of landslide hazard intensity mapping. In: Cruden D, Fell R (eds) Landslide risk assessment. Proceedings of the international workshop on landslide risk assessment, Honolulú. Balkema, Rotterdam, pp 215–226Google Scholar
  329. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Landslides. Proceedings of the VIth international symposium of landslides, Lausanne, vol 1, pp 3–35Google Scholar
  330. Hutchinson JN (1992) Landslide hazard assessment. In: Proceedings of the VIth ISL, Christchurch, vol 1, pp 1805–1841Google Scholar
  331. Irigaray C (1990).Cartografía de riesgos geológicos asociados a movimientos de ladera en el sector de Colmenar (Málaga). Unpublished Post-graduate Thesis. University of Granada, 390 ppGoogle Scholar
  332. Irigaray, C (1995) Movimientos de ladera: inventario, análisis y cartografía de susceptibilidad mediante un Sistema de Información Geográfica: Aplicación a las zonas de Colmenar(Málaga), Rute (Córdoba) y Montefrío (Granada). Unpublished PhD Thesis. University of Granada, SpainGoogle Scholar
  333. Irigaray C, Chacón J (2003) Métodos de análisis de la susceptibilidad a los movimientos de ladera mediante S.I.G. In: Ayala-Carcedo FJ, Corominas J (eds) Mapas de susceptibilidad a los movimientos de ladera con técnicas SIG, pp 21–36. Instituto Geológico y Minero de España, 194 pp, serie Medio Ambiente, no. 4. Madrid, SpainGoogle Scholar
  334. Irigaray C, Fernández T, Chacón J (1994) GIS landslide inventory and analysis of determinant factors in the sector of Rute (Córdoba, Spain). In: Oliveira, Rodriguez, Coelho, Cunha (ed) 7th International IAEG Congress, Lisboa, Portugal, vol VI. Balkema, Rotterdam, pp 4659–4668Google Scholar
  335. Irigaray C, Fernández T, Chacón J (1996a) Comparative analysis of methods for landslide susceptibility mapping. In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 373–384Google Scholar
  336. Irigaray C, Chacón J, Fernández T (1996b) Methodology for the analysis of landslide determinant factors by means of a G.I.S. Application to the Colmenar area (Malaga, Spain). In: Chacón J, Irigaray C, Fernández T (eds) Landslides. Balkema, Rotterdam, pp 163–172Google Scholar
  337. Irigaray C, Fernández T, y Chacón J (1996c) Inventory and analysis of determining factors by a GIS in the northern edge of the Granada basin (Spain). In: Senneset K (ed) Landslides, vol 3. Balkema, Rotterdam, pp 1915–1921Google Scholar
  338. Irigaray C, Fernández T, y Chacón J (1996d) Metodología de análisis de factores determinantes de movimientos de ladera mediante un S.I.G. Aplicación al Sector de Rute (Córdoba, España). In: Chacón J, Irigaray C (eds) VI Congreso Nacional y Conferencia Internacional de Geología Ambiental y Ordenación del Territorio, Granada, Spain, vol II, pp 55–74Google Scholar
  339. Irigaray C, Fernández T, y Chacón J (1997a) Validación de un método de análisis de la susceptibilidad a los movimientos de ladera. aplicación al sector de Rute. In: Alonso E, Corominas J, Chacón J, Oteo C, y Pérez J (eds) IV Simposio Nacional sobre taludes y laderas inestables, Granada, Spain, vol I, pp 39–49Google Scholar
  340. Irigaray C, Fernández T, y Chacón J (1997b) Aplicación de un SIG al análisis del medio físico en el sector de Rute (Córdoba). Cuaternario y Geomorfología 11(1–2):99–112Google Scholar
  341. Irigaray C, Fernández T, El Hamdouni R, Chacón J (1998a) Practical validation of a methodology for landslide susceptibility assessment and mapping in the Betic Cordillera (Spain). In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress II, Vancouver. A.A. Balkema, Rotterdam, pp 1057–1064Google Scholar
  342. Irigaray C, Fernández T, El Hamdouni R, Chacón J (1998b) Análisis de la susceptibilidad a los movimientos de ladera y comprobación de su utilidad en el sector de Rute-Iznájar (Córdoba, Granada). I Congreso Andaluz de Carreteras, 10–13, Granada, Spain, vol II, pp 1829–1834Google Scholar
  343. Irigaray C, Fernández T, El Hamdouni R, Chacón J (1999) Verification of landslide susceptibility mapping. A case study. Earth Surf Processes Landforms 24:537–544Google Scholar
  344. Irigaray C, Lamas F, El Hamdouni R, Fernández, T, Chacón J (2000) The importance of precipitation and the susceptibility of the slopes for the triggering of landslides along the roads. Nat Hazards 21(1):65–81Google Scholar
  345. Irigaray C, Fernández T, Chacón J (2003) Preliminary rock-slope-susceptibility assessment using GIS and the SMR classification. In: Chacón J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):309–324Google Scholar
  346. Irigaray, C Fernández T El Hamdouni R Chacón J (2006) Evaluation and validation of landslide-susceptibility maps obtained by a GIS matrix method: examples from the Betic Cordillera (southern Spain). Natural Hazards, ISSN: 0921-030X (Paper) 1573-0840 (Online) DOI: 10.1007/s11069-006-9027-8Google Scholar
  347. Iwahashi J, Watanabe S, Furuya T (2003) Mean slope-angle frequency distribution and size frequency distribution of landslide masses in Higashikubiki area, Japan. Geomorphology 50:349–364Google Scholar
  348. Jaboyedoff M, Baillifard F, Phillippossian F, Rouiller JD (2004a) Assessing fracture occurrence using “weighted fracturing density”: a step forward estimation rock instability hazard. Nat Hazard Earth Syst Sci 4:83–93Google Scholar
  349. Jaboyedov M, Baillifard F, Couture R, Locat J, Locat P (2004b) New insight of geomorphology and landslide prone area detection using digital elevation model(s). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 191–198Google Scholar
  350. Jaboyedov M, Baillifard F, Couture R, Locat J, Locat P (2004c) Toward preliminary hazard assessment using DEM topographic analysis and simple mechanical modeling by means of sloping local base level. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 199–206Google Scholar
  351. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156Google Scholar
  352. Jhingran V, Mukherjee D (1996) Engineering geological approach for the assessment of landslide hazard in the Himalayan terrain for the highway. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L, Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 239–244Google Scholar
  353. Jibson RW (1993) Predicting earthquake-induced landslide displacements using Newmark's sliding block analysis. Transp Res Record 1411:9–17Google Scholar
  354. Jibson RW, Baum RL (1999) Assessment of landsalide hazards in Kaluani and Maakua Gulches, Oahu, Hawaii, following the 9 May 1999 Sacred Falls Landslide. USGS Science for a Changing World. http://www.pubs.usgs.gov./of/1999/ofr-99-0364/. Open-File Report 99-364. US Department of Interior, Denver Federal Center, Colorado, 10 pp
  355. Jibson RW, Harp EL, Michael JA (1998) A method for producing digital probabilistic seismic landslide hazard maps. Open-file report 98-113. Department of Interior, USGS, USA, 17 ppGoogle Scholar
  356. Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3/4):271–289Google Scholar
  357. Kääb A (2002) Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data. ISPRS J Photogrammetry Remote Sens 57:39–52Google Scholar
  358. Kawakami H, Saito Y (1984) Landslide risk mapping by a quantification method. In: Proceedings of the IVth ISL Toronto, Canada, vol 2, pp 535–540Google Scholar
  359. Kienholz H (1978) Maps of geomorphology and natural hazard of Grindewald, Switzerland, scale 1:10,000. Arctic Alpine Res 10(2):169–184Google Scholar
  360. Kim JW, Park SS, Kim CS, Lee Y (2004) The efficient web-based mobile GIS service system through reduction of digital map. In: Laganà A et al. (ed) ICCSA 2004, LNCS 3043. Springer, Berlin Heidelberg New York, pp 410–417Google Scholar
  361. Kimura H, Yamaguchi Y (2000).Detection of landslide areas using satellite radar interferometry. Photogrammetric Eng Remote Sens 66(3):337–344Google Scholar
  362. Kovácik M, Paudits P (1998) Map of relative susceptibility to mass movements of the Tatras region, Slovakia. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress II, Vancouver. A.A. Balkema, Rotterdam, pp 1019–1024Google Scholar
  363. Kubota T (1996) Study of the fractal dimension and geological condition of landslides. In: Chacón J, Irirgaray C, Fernández T(eds) Landslides. Proceedings of the conference (th ICFL. Granada, Madrid, Barcelona (Spain). Balkema, Rotterdam, pp 385–392Google Scholar
  364. Kumar P, Shima UN (1998) Landslide hazard zonation in Joshimath-Jelam area, Garhwal Himalaya, U.P. India. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 925–932Google Scholar
  365. Laird RT, Perkins JB, Bainbridge DA, Baker JB, Boyd RT, Huntsman D, Staub PE, Zucker MB (1979) Quantitative land-capability analysis. US Geological Survey Professional Paper 945. US Department of Interior, Washington, 115 ppGoogle Scholar
  366. Lan HX, Zhou CH, Wang LJ, Zhang HJ, Li RH (2004) Landslide hazard spatial analysis and prediction using GIS in the Xiaojiang watershed, Yunnan, China. Eng Geol: 20 (in press)Google Scholar
  367. Landry J (1979) Cartes ZERMOS. Zones exposés à des risques liés aix mouvements du sol et du sous-sol. Région de Long-le-Saunier à Oiligny (Jura). Orlèans, Bureau de Recherche Géologique et Minière, 14 pp, 1 mapGoogle Scholar
  368. Lee S (2004) Application of likelihood ratio and logistic regression models to landslide susceptibility mapping using GIS. Environ Manage 34(2):223–232Google Scholar
  369. Lee S, Choi W (2001) Construction of geological hazard spatial DB and development of geological hazard spatial information system. In: Proceedings of the IGARSS2001: scanning the present and resolving the future. IEEE, New York, pp 1693–1695Google Scholar
  370. Lee S, Choi UC (2003) Development of GIS-based geological hazard information system and its application for landslide analysis in Korea. Geosci J 7(3):243–252Google Scholar
  371. Lee S, Min K (2001) Statistical analysis of landslide susceptibility at Yongin, Korea. Environ Geol 40:1095–1113Google Scholar
  372. Lee S, Ryu (2004) Landslide susceptibility analysis and its verification using likelihood ratio, logistic regression and artificial neural network methods: case study of Yongin, Korea. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 91–96Google Scholar
  373. Lee EM, Doornkamp JC, Brunsden D, Noton NH (1987) Ground movement in Ventnor, Isle of Wight. Geomorphological Services Ltd., UK, 65 ppGoogle Scholar
  374. Lee S, Ryu J, Min K, Choi W, Won J (2000) Development and application of landslide susceptibility analysis techniques using geographic information system (GIS). In: Stein TI (ed) IGARSS 2000: IEEE 2000 International Geoscience and Remote Sensing Symposium 1:319–321Google Scholar
  375. Lee CF, Ye H, Yeung MR, Shan X, Chen G (2001a) AIGIS-based methodology for natural terrain landslide susceptibility mapping in Hong Kong. Episodes 24(3):150–159Google Scholar
  376. Lee S, Chang B, Choi W, Shin E (2001b) Regional susceptibility, possibility and risk analysis of landslide in Ulsan metropolitan city, Korea. In: Proceedings of the IGARSS 2001: scanning the present and resolving the future. IEEE, Australia, pp 1690–1692Google Scholar
  377. Lee S, Ryu J-H, Min K, Won J-S (2001c) Development of two artificial neural network for landslide susceptibility analysis. In: Proceedings of the IGARSS 2001: scanning the present and resolving the future. IEEE, Australia, pp 2364–2366Google Scholar
  378. Lee S, Chwae U, Min K (2002a) Landslide susceptibility mapping by correlation between topography and geological structure: the Janghung area, Korea. Geomorphology 46(3–4):149–162Google Scholar
  379. Lee S, Choi J, Min K (2002b) Landslide susceptibility analysis and verification using the Bayesian probability model. Environ Geol 43:120–131Google Scholar
  380. Lee S, Choi J, Chwae U, Chang B (2002c) Landslide susceptibility analysis using weight of evidence. In: IGARSS2002: IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: integrating our view of the planet, New York, USA, pp 2865–2867Google Scholar
  381. Lee S, Ryu J-H, Lee M-J, Won J-S (2003) Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea. Environ Geol 44:820–833Google Scholar
  382. Lee S, Ryu JH, Won JS, Park HJ (2004a) Determination and application of the weights for landslide susceptibility mapping using an artificial neural network. Eng Geol 71:289–302Google Scholar
  383. Lee S, Choi J, Ryu H (2004b) Probabilistic landslide hazard mapping using GIS and remote sensing data at Boun, Korea. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 85–90Google Scholar
  384. Lekkas E, Lozios G, Bertakis G, Vasilopoulou S (1995) Management of geoenvironmental problems (natural hazards). A method for landslide hazard assessment using geographical information systems (G.I.S.). In: Proceedings of the XV Congress of the Carpatho-Balcan Geological Association, special publication of the Geological Society of Greece no. 4/3, Athens, Greece, pp 996–1001Google Scholar
  385. Lekkas E, Vasilopoulou S, Hadzinakos J (1998) GIS aided landslide management in Ropoto, Trikala, Greece: Raster-vector data treatment. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG & Env. Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1759–1763Google Scholar
  386. Leone F, Aste JP, Leroi E (1996a) L’evaluation de la vulnerabilité aux mouvements de terrain: pour une meilleure quantification du risqué. Revue de Geographie Alpine 84(1):35–46Google Scholar
  387. Leone F, Favre JL, Leroi E (1996b) Vulnerability assessment of element exposed to mass-movement: working toward a better risk perception. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 263–269Google Scholar
  388. Leroi E (1996) Landslide hazard-risk maps at different scales: objectives, tools and developments. In: Kaare Senneset (ed) Proceedings of the VIIth ISL, Trondheim, vol 1, pp 35–52Google Scholar
  389. Leroi E (1997) Landslide risk mapping: problems, limitations and developments. In: Cruden DM, Fell R (eds) Landslide risk assessment. A.A. Balkema, Rotterdam, pp 239–250Google Scholar
  390. Leroi E, Rouzeau O, Scanvic JY, Weber CC, Vargas C (1992) Remote sensing and landslide hazard mapping in the Colombian Andes. Episodes 15(1):32–35Google Scholar
  391. Leroueil S, Locat J (1998) Slope movements—geotechnical characterization, risk assessment and mitigation. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 933–944Google Scholar
  392. Lessing P, Kulander BR, Wilson BD, Dean SL, Woodring SM (1976) West Virginia landslides and slide-prone areas. West Virginia Geol Econ Surv, Environ Geol Bull 15:64Google Scholar
  393. Li S, Feng X-T, Zhao H, Feng S, Liu L, Zhao H (2004) Forecast analysis of monitoring data for high slopes on three dimensional geological information and an intelligent algorithm. SINOROROCK2004 symposium. Int J Rock Mech Min Sci 41(3):1–6Google Scholar
  394. Liener S, Kienholz H, Liniger M, Krummenacher BK (1996) SLIDISP—a procedure to locate landslide prone areas. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 279–284Google Scholar
  395. Lin ML, Tung CC (2003) A GIS-based potential analysis of the landslides induced by the Chi-Chi earthquake. Eng Geol 71:63–77Google Scholar
  396. Lipmann RP (1987) An introduction to computing with neural nets. IEEE Acoust Speech Signal Processing Mag 4:4–22Google Scholar
  397. Liu ZQ (2003) Fuzzi cognitive maps in GIS data analysis. Soft Comput 7:394–401Google Scholar
  398. Liu X, Lei J (2003) A method for assessing regional debris flow risk: an application in Zhaoton of Yunnan province (SW China). Geomorphology 52:181–191Google Scholar
  399. Liu X, Yue ZQ, Tham LG, Lee CF (2002) Empirical assessment of Debris flow risk on a regional scale in Yunnan Province, Southwestern China. Environ Manage 30(2):249–264Google Scholar
  400. Liu JG, Mason PJ, Clerici N, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the three gorges area of the Yangtze river using ASTER imagery: Zigui–Badong. Geomorphology 61:171–187Google Scholar
  401. Lu P, Rosenbaum MS (2003) Artificial neural networks and grey systems for the prediction of slope stability. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):383–398Google Scholar
  402. Luzi L (1995a) GIS for slope stability zonation in the Fabriano area, Central Italy. MSc Thesis, ITC, Enschede, Netherlands. UnpublishedGoogle Scholar
  403. Luzi L (1995b) Application of favourability modelling to zoning of landslide hazard in the Fabriano Area, Central Italy. In: Proceedings of the first joint European conference and exhibition on geographical information, The Hague, Netherlands, pp 398–402Google Scholar
  404. Luzi L, Pergalani F (1996a) Application of statistical and GIS techniques to slope instability zonation (1:50.000 Fabriano geological map sheet). Soil Dyn Earthquake Eng 15(2):83–94Google Scholar
  405. Luzi L, Pergalani F (1996b) A methodology for slope vulnerability zonation using a probabilistic method. In: Chacón J, Irigaray C (eds) Proceedings of the Sexto Congreso Nacional y Conferencia Internacional sobre Riesgos Naturales, Ordenación del Territorio y Medio Ambiente, vol 1, S.E.G.A.O.T., Granada, Spain, pp 537–556Google Scholar
  406. Luzi L, Pergalani F (1999) Slope instability in static and dynamic conditions for urban planning: the “Oltre Po Pavese” case history (Regione Lombardia–Italy). Nat Hazards 20:57–82Google Scholar
  407. Luzi L, Pergalani F (2000) A correlation between slope failures and accelorometric parameters: the 26 September 1997 earthquake (Umbria-Marche, Italy). Soil Dyn Earthquake Eng 20:301–313Google Scholar
  408. Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–316Google Scholar
  409. Luzi G, Pieraccini M, Mecatti D, Noferini L, Guidi G, Moia F, Atzeni C (2004) Ground-based radar interferometry for landslides monitoring: atmospheric and instrumental decorrelation sources on experimental data. IEEE Trans Geosci Remote Sens 42(11):2454–2466Google Scholar
  410. Maharaj RJ (1993) Landslide processes and landslide susceptibility analysis from an upland watershed—a case study from St.Andrew, Jamaica, West Indies. Eng Geol 34(1–2):53–79Google Scholar
  411. Mahr T, Malgot J (1978) Zoning maps for regional and urban development based on slope stability. In: Proceedings of the IIIrd I.A.E.G. Congress I, Spain 1:14:124–137Google Scholar
  412. Mallamud BD (2003) A universal probability distribution for landslide events. Geophys Res Abstr 5:04399Google Scholar
  413. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Processes Landforms 29:687–711Google Scholar
  414. Malet JP, Hartig S, Calais E, Maquaire O (2000) Apport du GPS suiví en continu des mouvements de terrain. Application au glissement-coulée de Super-Sauze (Alpes-de-Haute-Provence, Frnace). C.R Acad Sci de la Terre et des Planétes 331:175–182Google Scholar
  415. Malet JP, Maquaire O, Calais E (2002) The use of global positioning system techniques for the continuous monitoring of landslide: application to the Super-Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology 43:33–54Google Scholar
  416. Malkawi AIH, Saleh B, Al-Sheriedeh MS, Hamza MS (2000) Mapping of landslide hazard zones in Jordan using remote sensing and GIS. J Urban Plng Dev ASCE 126(1):1–17Google Scholar
  417. Mandelbrot BB (1967) How long is the coast of Britain? Statistical self-similarity and fractal dimension. Science 156:636–638Google Scholar
  418. Mandelbrot BB (1983) The fractal geometry of nature. Freeman, New YorkGoogle Scholar
  419. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, Nueva York Google Scholar
  420. Maquaire O, Thiery Y, Malet P, Weber C, Puissant A, Wania A (2004) Current practices and assessment tools of landslide vulnerability in mountainous basins identification of exposed elements with a semiautomatic procedure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 171–176Google Scholar
  421. Marble DF (1984) Geographic information systems: an overview. In: Proceedings of the Pecora 9 Conference, Sioux Falls, SD, pp 18–24)Google Scholar
  422. Marchi L, Dalla Fontana G (2000) Erosion area assessment in mountainous basing using GIS methods. In: Haigh M, Krecek J (eds) Environmental reconstruction in headwater areas. NATO Advances Science Institutes Series, Sub-Ser2, Environmental Security, vol 68. Kluwer, Dordrecht, pp 123–136Google Scholar
  423. Marker B (1998) Incorporation of information on geohazards into the planning process. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 385–389Google Scholar
  424. Marquínez J, Menéndez R, Farias P, Jiménez M (2003) Predictive GIS-based model of rock fall activity in mountain cliffs. In Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):341–360Google Scholar
  425. Martínez-Casasnovas JA (2003) A spatial information technology approach for the mapping and quantification of gully erosion. Catena 50:293–308Google Scholar
  426. Marzorati S, Luzi L, De Amicis M (2002) Rock falls induced by earthquakes: a statistical approach. Soil Dyn Earthquake Eng 22:565–577Google Scholar
  427. Mason PJ, Rosenbaum MS (2002) Geohazard mapping for predicting landslides: an example from the Langhe Hills in Piemonte, NW Italy. Quart J Eng Geol Hydrogeol 35:317–326Google Scholar
  428. Mason PJ, Rosenbaum MS, Mc Moore JM (1998) Digital image texture analysis for landslide hazard mapping. In: Maund JG, Eddleston M (eds) Geohazard in engineering geology. Geological Society, London, Engineering Geology Special Publications 15, pp 297–305Google Scholar
  429. Mayer K, Múller-Koch K, von Poschinger A (2002) Dealing with landslide hazards in the Bavarian Alps. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 417–421Google Scholar
  430. McClelland DE, Foltz RB, Wilson WD, Cundy TW, Heinemann R, Saurbier JA, Schuster RL (1997) Assessment of the 1995 & 1996 floods and landslides on the Clearwater National Forest, Part I: Landslide Assessment, A Report to the regional Forester Northern Region U.S. Forest ServiceGoogle Scholar
  431. McClung DM (2002a) The elements of applied avalanche forecasting. Part I: the human issues. Nat Hazards 25:111–129Google Scholar
  432. McClung DM (2002b) The elements of applied avalanche forecasting. Part II: the physical issues and the rules of applied avalanche forecasting. Nat Hazards 26:131–146Google Scholar
  433. McCulloch WS, Pitts WH (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5:115–133Google Scholar
  434. McKean J, Roering J (2004) Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology 57:331–351Google Scholar
  435. McKean J, Buechel S, Gaydos L (1991) Remote-sensing and landslide hazard assessment. In: 8th thematic conference geology remote sensing (ERIM), Denver, CO, USA, vol 2, pp 729–742Google Scholar
  436. Mehrotra GS, Sarkar S, Kanungo DP, Mahadevaiah K (1996) Terrain analysis and spatial assessment of landslide hazards in parts of Sikkim, Himalaya. J Geol Soc India 47(4):491–498Google Scholar
  437. Mejía-Navarro M, Wohl EW, Oaks SD (1994) Geological hazards, vulnerability, and risk assessment using GIS: model for Glenwood Springs, Colorado. Geomorphology 10:331–354Google Scholar
  438. Menéndez-Duarte R, Marquínez J (2002) The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS. Geomorphology 43:117–136Google Scholar
  439. Méneroud JP (1978) Cartographie des risques dans les Alps-Maritimes (France). In: Proceedings of the IIIrd I.A.E.G. Congress, II, Chap. 46, pp 98–107Google Scholar
  440. Méneroud JP, Olivier G (1978) Eboulement et chutes de pierres sur les routes. Methode de cartographie. Groupe d’Etudes des Falaises (GEF). Rapport de recherche LPC no. 80, L.C.P.Ch., Paris, France, 63 ppGoogle Scholar
  441. Méneroud JP, Calvino A (1976) Carte ZERMOS. Zones exposés à des risques liés aix mouvements du sol et du sous-sol à 1:25,000 region de la Moyenne Vesubie (Alpes- Maritimes.Orléans, Bureau de Recherche Géologique et Minière, 11 pp, 1 mapGoogle Scholar
  442. Michel-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns Community. Nat Hazards 30:233–249Google Scholar
  443. Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthquake Eng 18:305–323Google Scholar
  444. Miles SB, Keefer DK, Nyerges TL (2000) A case study in GIS-based environmentl model validation using earthquake-induced landslide hazard. In: Heuvelink GBM, Lemmens MJP (eds) Accuracy 2000, proceedings, Delft University Press, Delft, pp 481–492Google Scholar
  445. Miller DJ (1995) Coupling GIS with physical models to assess deep-seated landslide hazards. Environ Eng Geosci 1(3):263–276Google Scholar
  446. Miller DJ, Sías J (1998) Deciphering large landslides: linking hydrogeological, groundwater and slope stability models through GIS. Hydrol Processes 12:923–941Google Scholar
  447. Moon V, Blackstock H (2004) A methodology for assessing landslide hazard using deterministic stability models. Nat Hazards 32:111–134Google Scholar
  448. Mora P, Baldi P, Casula G, Fabris M, Ghirotti M, Mozzini E, Pesci A (2003) Global positioning systems and digital photogrammetry for the monitoring of massmovements: application to the Ca’ di Malta landslide (northern Apennines, Italy). Eng Geol 68:103–121Google Scholar
  449. Moreiras SM (2004) Landslide incidence zonation in the Rio Mendoza valley, Mendoza province, Argentina. Earth Surf Processes Landforms 29:255–266Google Scholar
  450. Moreiras SM (2005) Landslide susceptibility zonation in the Rio Mendoza valley, Argentina. Geomorphology 66:345–357Google Scholar
  451. Morgan GC, Rawlings GE, Sobkowicz JC (1992) Evaluating total risk to communities from large debris flows. In: Geotechnique and natural hazard. Proceedings of the 1992 symposium on geohazard. Bi/Tech, Toronto, pp 225–236Google Scholar
  452. Msilimba GG, Holmes PJ (2005) A landslide hazard assessment and vulnerability appraisal procedure: Vunguvungu/Banga catchment, Northern Malawi. Nat Hazards 34:199–216Google Scholar
  453. Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585Google Scholar
  454. Nagarajan R, Roy A, Kumar RV, Mukherjee A, Khire MV (2000) Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bull Eng Geol Environ 58:275–287Google Scholar
  455. Nagler T, Rott H, Kamelger A (2002) Analysis of landslides in Alpine areas by means of SAR interferometry. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:198–200Google Scholar
  456. Nakagawa H, Takahashi T (1997) Estimation of a debris flow hydrograph and hazard area. In: Chen CL (ed) Debris-flow hazards mitigation: mechanics, prediction & assessment. ASCE, New York, pp 64–67Google Scholar
  457. Neaupane KM, Achet SH (2004) Use of backpropagation neural network for landslide monitoring: a case study in the higher Himalaya. Eng Geol 74:213–226Google Scholar
  458. Neulands H (1976) A prediction model of Landslip. Catena 5:215–30Google Scholar
  459. Newman EB, Paradis AR, Brabb EE (1978) Feasibility and cost of using a computer to prepare landslide susceptibility maps of the San Francisco Bay region, California. US Geological Survey Bulletin 1443, USGS, USA, 23 ppGoogle Scholar
  460. Newmark NM (1965) Effects of earthquakes on dam and embankments. Geotechnique 15:139–160CrossRefGoogle Scholar
  461. Nilsen TH, Wright RH (1979) Relative slope stability and land-use planning in the San Francisco Bay region, California. US Geological Survey Professional Paper 944, US Department of Interior, Washington, 103 ppGoogle Scholar
  462. Nilsen TH, Brabb EE (1977) Landslides. In: Borcherdt RD (ed) Studies for seismic zonation of the San Francisco Bay Region. US Geological Survey Professional Paper 941-A, 96 ppGoogle Scholar
  463. O'Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22:794–804Google Scholar
  464. Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343Google Scholar
  465. Ojeda-Moncayo J, Locat J, Couture R, Leroueil S (2004) The magnitude of landslides: an overview. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 379–384Google Scholar
  466. Omar H, Schaefer VR, Salsidu MS, Daud M, Zohadie MB, Muniandy R (2004) An algorithm for cut slope evaluation: geological rating and potential instability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 281–286Google Scholar
  467. Pachauri AK, Pant M (1992) Landslide hazard mapping based on geological attributes. Eng Geol 32(1–2):81–100Google Scholar
  468. Pachauri AK, Gupta PV, Chander R (1998) Landslide zoning in a part of the Garhwal Himalayas. Environ Geol 36(3–4):325–334Google Scholar
  469. Pack RT, Tarboton DG, Goodwin CN (1998) The SINMAP approach to terrain stability mapping. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 1157–1165Google Scholar
  470. Paganini M, Palazo F, Arino O, Manunta P, Ferretti A, Gomtier E, Wunderle S, Pasquali P, Strozzi T, Zilger J, van Westenlo C (2003) SLAM, the development of an EO service to support the legal obligations of Swiss and Italians Geological Risk Services in landslide risk forecasting and prevention. In: Proceedings of the IGARSS2003: IEEE international geoscience and remote sensing symposium. Learning from earth’s shapes and sizes, pp 2422–2425Google Scholar
  471. Pan KL, Chen CH, Fu CH (1998) A regional assessment of destructive debris flow along New Central Cross-Highway in Taiwan. In: Moore D, Hungr O (eds) Proceedings of the 8th IAEG Congress, Vancouver. A.A. Balkema, Rotterdam, pp 2039–2044Google Scholar
  472. Parise M (2001) Landslide mapping techniques and their use in the assessment of the landslide hazard. Phys Chem Earth C 26(9):697–703Google Scholar
  473. Parise M, Jibson RW (2000) A seismic landslide susceptibility rating of geologic units based on analysis of characteristics of landslides triggered by the 17 January, 1994 Northridge, California earthquake. Eng Geol 58:251–270Google Scholar
  474. Park NW, Chi KH (2003) A probabilistic approach to predictive spatial data fusion for geological hazard assessment. In: Proceedings of the IGARSS2003: IEEE International Geoscience and Remote Sensing Symposium. Learning from earth’s shapes and sizes, pp 2425–2427Google Scholar
  475. Pasuto A, Soldati M (1999) The use of landslide units in geomorphological mapping: an example in the Italian Dolomites. Geomorphology 30:53–64Google Scholar
  476. Patel AN, Mehta HS (1980) Application of digital techniques in identifying landslide prone areas. In: Proceedings of the IIIrd international symposium on landslides, Calcuta, vol I/5, pp 25–27Google Scholar
  477. Patt AG, Schrag DP (2003) Using specific language to describe risk and probability. Clim Change 61:17–30Google Scholar
  478. Paudits P, Bednarik M (2002) Using GIS in evaluation of landslide susceptibility in Handlovska kotlina basin. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 437–441Google Scholar
  479. Pelletier JD, Malamud BD, Blodgett T, Turcotte DL (1997) Scale-invariance of soil moisture and its implications for the frequency-size distribution of landslides. Eng Geol 48:255–268Google Scholar
  480. Perotto-Baldiviezo HL, Thurow TL, Smith CT, Fisher RF, Wu XB (2004) GIS-based spatial analysis in steeplands, southern Honduras. Agric Ecosyst Environ 103:165–176Google Scholar
  481. Peuquet DJ, Marble DF (1990) Introductory readings in geographic information systems. Taylor & Francis, London, 371 ppGoogle Scholar
  482. Pike RJ (1991) The geometric signature: quantifying landslide-terrain types from digital elevation models. Math Geol 20(5):491–511Google Scholar
  483. Pike RJ (2000) Geomorphometry—diversity in quantitative surface analysis. Prog Phys Geogr 4(1):1–20Google Scholar
  484. Pistocchi A, Zani O (2001) Integrated hydrologic and landslide risk management in the Romagna River Bassin using cartographic predictive modeling. In: Falconer RA, Blain WR (eds) River basin management. International series on progress in water resources, vol 5. WIT Press, Ashurst, pp 273–282Google Scholar
  485. Pomeroy JS (1974a) Landslide susceptibility and processes in the Maryland Coastal Plain. Schultz AP, Southworth CS (eds) Landslides of eastern North America. US Geological Survey Circular 1008, Chap. 2, pp 5–9Google Scholar
  486. Pomeroy JS (1974b) Landslide susceptibility map of the Emsworth 7-1/2 minute quadrangle, Allegheny County, PA. US Geological Survey Open-File Report 74-75, 15 pp, 1 pl., 7 figs., scale 1:24,000Google Scholar
  487. Pomeroy JS (1974c) Landslide susceptibility map of part of the Mars 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-114, 18 pp, 1 pl., 7 figs., scale 1:24,000Google Scholar
  488. Pomeroy JS (1974d) Landslide susceptibility map of part of the Valencia 7-1/2 minute quadrangle, Allegheny County and vicinity, Pennsylvania. US Geological Survey Open-File Report 74-116, 18 pp, 1 pl., scale 1:24,000Google Scholar
  489. Pomeroy JS (1974e) Landslide susceptibility map of the Glenshaw 7-1/2 minute quadrangle, Allegheny County, Pennsylvania. US Geological Survey Open-File Report 74-118, 18 pp, 1 pl., 7 figs., scale 1:24,000Google Scholar
  490. Pomeroy JS (1978) Isopleth maps of landslide deposits, Washington county, Pennsylvania—a guide to comparative slope stability. US Geological Survey Misc. Field Investigation Map MF-1010. USGS, CaliforniaGoogle Scholar
  491. Prina E, Bonnard Chr, Vulliet L (2004) Vulnerability and risk assessment of a mountain road crossing landslides. Riv Ital Giotec 2:67–79Google Scholar
  492. Radbruch DH (1970) Map of relative amounts of landslides in California. US Geological Survey Open-File Report 70-1485, 36 pp, map scale 1:500,000. US Geological Survey Open-File Report 85-585Google Scholar
  493. Radbruch DH, Crowther KC (1973) Map showing areas of estimated relative susceptibility to landsliding in California. US Geological Survey Miscellaneous Geologic Investigations Map I-747, scale 1:1,000,000Google Scholar
  494. Radbruch DH, Colton RB, Davies WE, Lucchitta I, Skipp BA, Varnes DJ (1982) Landslide overview map of the conterminous United States. US Geological Survey Miscellaneous Field Studies Map MF-771, 1 sheet, scale 1:7,500,000. Washington Division of Geology and Earth Resources, USAGoogle Scholar
  495. Raetzo H, Lateltin O, Tripet JP (2002) Landslides and evaluation of triggering factors, hazard assessment practice in Switzerland. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 455–460Google Scholar
  496. Rafaelli SG, Montgomery DR, Greenberg HM (2001) A comparison of thematic mapping of erosional intensity to GIS-driven process models in an Andean drainage basin. J Hydrol 244:33–42Google Scholar
  497. Rautela P, Lakhera RC (2000) Landslide risk analysis between Giri and Tons rivers in Himachal Himalaya (India). IAG 2(3/4):153–160Google Scholar
  498. Refice A, Capolongo D (2002) Probabilistic modelling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28:735–749Google Scholar
  499. Refice A, Guerriero L, Bovenga F, Wasowski J, Veneziani N, Atzori S, Ferrari AR, Marsella M (2000) Detecting landslide activity by SAR interferometry. European Space Agency (Special Publication) ESA SP 461:1176–1188Google Scholar
  500. Refice A, Bovenga F, Guerriero L, Wasowski J (2001) DInSAR applications to landslide studies. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:144–146Google Scholar
  501. Remondo J, González-Díez A, Díaz de Terán JR, Cendrero A (2003a) Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba valley, Guipúzcoa (Spain). In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):267–279Google Scholar
  502. Remondo J, González-Díez A, Dííaz de Terán JR, Cendrero A, Fabbri A, Chung CJF (2003b) Validation of landslide susceptibility maps examples and applications from a case study in Northern Spain. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):437–449Google Scholar
  503. Remondo J, Bonachea J, Cendrero A (2004) Probabilistic landslide hazard and risk mapping on the basis of occurrence and damages in the recent past. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 125–130Google Scholar
  504. Rengers N, Soeters R, Van Westen CJ (1992) Remote sensing and GIS applied to mountain hazard mapping. Episodes 15(1):36–45Google Scholar
  505. Rezig S, Favre JL, Leroi E (1996) The probabilistic evaluation of landslide risk. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 351–355Google Scholar
  506. Rizzo V (2002) GPS monitoring and new data on slope movements in the Maratea Valley(potenza, Basilicata). Phys Chem Earth 27:1535–1544Google Scholar
  507. Rizzo V, Tesauro M (2000) SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Phys Chem Earth B 25(9):771–780Google Scholar
  508. Rocha GC (2004) Landslide risk mapping methodology applied to medium size urbanities in Brazil: case study of Juiz de Fora town, Minas Gerais state. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 297–302Google Scholar
  509. Rodríguez Ortiz JM, Prieto C, Hinojosa JA (1978) Regional studies on mass movements in Spain. In: Proceedings of the IIIrd I.A.E.G. Congress I, 1:29:267–278Google Scholar
  510. Rodriguez KM, Weissel JK, Kim Y (2002) Classification of landslide surfaces using fully polarimetric SAR: examples from Taiwan. In: International Geoscience and Remote Sensing Symposium (IGARSS) 5:2918–2920Google Scholar
  511. Romana M (1985) New adjustment ratings for application of Bieniawski’s classification to slopes. In: International symposium on the role of rock mechanics, ISRM, Zacatecas, pp 49–53Google Scholar
  512. Romana M (1993) A geomechanical classification for slopes: slope mass rating. In: Hudson JA (ed) Comprehensive rock engineering, vol 3, Pergamon, UK, pp 575–600Google Scholar
  513. Ronzani G, Strada C, Zamai V (1999) Application of GIS based techniques in the ellaboration of the Romana SMR index (1985) in order to assess the stability of rock walls (Italy). J Tech Environ Geol 3:13–18Google Scholar
  514. Rosenbaum MS, Popescu ME (1996) Using a geographical information system to record and assess landslide-related risks in Polonia. In: Kaare Senneset (ed) Proceedings of the VIth I.S.L., Trondheim, Norway, vol 1. A.A. Balkema, Rotterdam, pp 363–370Google Scholar
  515. Rosenbaum MS, Senneset K, Popescu ME (1997) Assessing the likelihood of landslide-related hazards on a regional scale. In: Marinos PG, Koukis GC, Tsiambaos GC, Stournaras GC (eds) Engineering geology and the environment. A.A. Balkema, Rotterdam, pp 1009–1014Google Scholar
  516. Rouai M, Jaaidi EB (2003) Scaling properties of landslides in the Rif mountains of Morocco. Eng Geol 68:353–359Google Scholar
  517. Ruff M, Schanz C, Czurda K (2002) Geological hazard assessment and rockfall modelling in the Northern Calcareous Alps, Voralberg/Austria. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 461–470Google Scholar
  518. Rumelhart H, Hinton GE, Williams RJ (1986) Learning internal representation by error propagation. In: Rumelhart H, McClelland JL (eds) Parallel distributed processing. MIT Press, Cambridge, pp 318–362Google Scholar
  519. Rybar J (1973) Representation of landslides in engineering geology maps. In: Landslide—the slope stability review, Eureka, California, vol 1, no. 1, pp 15–21Google Scholar
  520. Saboya F Jr, Pinto WD, Gatts CEN (2004) Fuzzy mapping of great areas susceptible to slope failure. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 371–378Google Scholar
  521. Sadek S, Kaysi I, Bedran M (2000) Geotechnical and environmental considerations in highways layouts: an integrated GIS assessment approach. JAG 2(3/4):190–198Google Scholar
  522. Saha AK, Gupta RP, Arora MK (2002) GIS-based landslide hazard zonation in the Bhagirathi (Canga) Valley, Himalayas. Int J Remote Sens 23(2):357–369Google Scholar
  523. Santacana N (2001) Análisis de la susceptibilidad del terreno a la formación de deslizamientos superficiales y grandes deslizamientos mediante el uso de sistemas de información geográfica: aplicación a la cuenca del río Llobregat. PhD Thesis. Department of Ingeniería del Terreno y Cartográfica, UPC, Barcelona, Spain. UnpublishedGoogle Scholar
  524. Santacana N, Corominas J (2002) Example of validation of landslide susceptibility maps. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 305–310Google Scholar
  525. Santacana N, Baeza C, Corominas J, de Paz A, Marturiá J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet Area (Eastern Pyrenees, Spain). In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):281–295Google Scholar
  526. Sarkar S, Kanungo DP (2004) An integrated approach for landslide susceptibility mapping using remote sensing and GIS. Photogrammetric Eng Remote Sens 70(5):617–625Google Scholar
  527. Sarkar S, Kanungo DP, Mehrotra GS (1995) Landslide hazard zonation: a case study in Garhwai Himalaya, India. Mt Res Dev 15(4):301–309Google Scholar
  528. Sasaki Y, Abe M, Hirano I (1991) Fractal of slope failure size-number distribution. J Japan Soc Eng Geol 32(3):1–11Google Scholar
  529. Sassa K, Wang G, Fukuoka H, Wang F, Ochiai T, Sugiyama M, Sekiguchi T (2004) Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides DOI 10.1007/s10346–004–0028-yGoogle Scholar
  530. Saunchyn DJ, Trench NR (1978) Landsat applied to landslide mapping. Photogrammetric Eng Remote Sens 44(6):735–741Google Scholar
  531. Savage WZ, Godt JW, Baum RL (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In: Rickenmann D, Chen C (eds) Debris-flow hazards mitigation: mechanics, prediction and assessment. MillPress Science, Rotterdam, pp 179–187Google Scholar
  532. Savage WZ, Codt W, Baum RL (2004) Modeling timedependent areal slope stability. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 23—38Google Scholar
  533. Scanvic JY (1994) Remote sensing and GIS: tools for the mapping of areas at risk from landslide. Mappemonde 94(4):44–47Google Scholar
  534. Schiavon G, Del Frate F, D’Ottavio D, Stramondo S (2003) Landslide identification by SAR interferometry: the Sarno case. In: International Geoscience and Remote Sensing Symposium (IGARSS) 4:2428–2429Google Scholar
  535. Schmid RH, MacCannel J (1955) Basic problems, techniques and theory of isopleth mapping. J Am Stat Assoc 50(269):220–239Google Scholar
  536. Schmoll HR (1974) Slope-stability map of Anchorage and vicinity. Alaska US Geol Surv Misc Inv Map I–787–EGoogle Scholar
  537. Schuster RL, Krizek RJ (eds) (1978) Landslides: analysis and control. Transportation Research Board Special Report 176. National Research Council, Washington, DC, 234 ppGoogle Scholar
  538. Schuster RL, Wieczorek GF (2002) Landslides triggers and types. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 59–78Google Scholar
  539. Scott GR (1972) Map showing landslides and areas susceptible to landslides in the Morrison Quadrangle, Jefferson County, Colorado. US Geological Survey. Map I-790-B. USAGoogle Scholar
  540. Sfar Felfoul M, Snane MH, Mlaouhi A, Megdiche MF (1999) Importance du facteur lithologique sur le développement des ravins du basin versant dÓued Maiez en Tunisie Centrale. Bull Eng Geol Environ 57:285–293Google Scholar
  541. Shafer G (1976) A mathematical theory of evidence. Princeton University Press, PrincetonGoogle Scholar
  542. Shortliffe EH, Buchanan GG (1975) A model of inexact reasonning in medicine. Math Biosci 23:351–379Google Scholar
  543. Siddle RC, Dakhal AS (2003) Recent advances in the spatial and temporal modeling of shallow landslides. In: MODSIM2003: International Congress on Modelling and Simulation. University of Wales, Nedlands, pp 602–607Google Scholar
  544. Siddle RC, Wu WM (2001) Evaluation of the temporal and spatial impacts of timber harvesting on landslide occurrence. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds—human influence on hydrology and geomorphology in urban and forest areas. Water Sci Appl 2:179–193Google Scholar
  545. Simons DB, Li RM, Ward TJ (1978) Mapping of potential landslide areas in terms of slope stability. Fort Collins, Colorado. Civil Engineering Dept., Colorado State University, 75 ppGoogle Scholar
  546. Singhroy V, Molch K (2004) Characterizing and monitoring rockslides from SAR techniques. Adv Space Res 33(3):290–295Google Scholar
  547. Singhroy V, Mattar KE, Gray AL (1998) Landslide characterisation in Canada using interferometric SAR and combined SAR and TM images. Adv Space Res 21(3):465–476Google Scholar
  548. Singhroy V, Molch K, Bulmer M (2002) Characterization of landslide deposits using SAR images. In: International Geoscience and Remote Sensing Symposium (IGARSS) 1:185–187Google Scholar
  549. Skabar A (2003) Predicting the distribution of discrete spatial events using artifical neural networks. In: Gedeon TD, Fung LCC (eds) AI 2003 and LNAI 2903. Springer, Berlin Heidelberg New York, pp 567–577Google Scholar
  550. Smith GJ, Rosenbaum MS (1998) Graphical methods for hazard mapping and evaluation. In: Maund JG, Eddleston M (eds) Geohazards in engineering geology. Geological Society, London, Engineering Geology Special Publication 15, pp 215–220Google Scholar
  551. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Transportation Research Board, Special Report 247, National Academy Press, Washington, pp 129–177Google Scholar
  552. Soeters R, Rengers N, van Westen CJ (1991) Remote sensing and geographical information systems as applies to mountain hazard analysis and environmental monitoring. In: 8th thematic conference geology remote sensing (ERIM), Denver, vol 2, pp 1389–1402Google Scholar
  553. Somfai E, Czirók A, Viczek T (1994) Power-law distribution of landslides in an experiment of a granular pile. J Phys A: Math Gen 27(I):757–763Google Scholar
  554. Sorriso-Valvo M (2002) Landslides: from inventory to risk. In: Rybár, Stemberk, Wagner (eds) Proceedings of the 1st European conference on landslides, Prague. Balkema, Rotterdam, pp 59–79Google Scholar
  555. Spiker EC, Gori PL (2000) National landslide hazards mitigation strategy: a framework for loss reduction. Open-file report 00-450, Department of Interior, U.S.G.S., USA, 49 ppGoogle Scholar
  556. Spiker EC, Gori PL (2003a) Partnerships for reducing landslide risk: assessment of the national landslide hazards mitigation strategy. The National Academy of Sciences Press, Washington, DCGoogle Scholar
  557. Spiker EC, Gori PL (2003b) National landslide hazards mitigation strategy: a framework for loss reduction. USGS Circular 1244. US Department of Interior, U.S.G.S. Reston, Virginia, 56 ppGoogle Scholar
  558. Spizzichino D, Falconi L, Delmonaco G, Margottini C, Puglisi V (2004) Integrated approach for landslide risk assessment of Craco village (Italy). In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 237–242Google Scholar
  559. Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68(1–2):53–66Google Scholar
  560. Sterlacchini S, Masetti M, Poli A (2004) Spatial integration of thematic data for predictive landslide mapping: a case study from Oltrepo Pavese area, Italy. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 109–117Google Scholar
  561. Stevenson PC (1977) An empirical method for the evaluation of relative landslide risk. Int Ass Eng Geol Bull 16:69–72Google Scholar
  562. Süzen ML, Doyuran V (2004a) Data driven bivariate landslide susceptibility assessment using geographical information system: a method and application to Asarsuyu catchment, Turkey. Eng Geol 71: 303–321Google Scholar
  563. Süzen ML, Doyuran V (2004b) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679Google Scholar
  564. Tangestani MH (2004) Landslide susceptibility mapping using the fuzzy gamma approach in a GIS, Kahan catchment area, southwest Iran. Aust J Earth Sci 51(3):439–450Google Scholar
  565. Tarchi D, Leva D, Sieber AJ (2000) SAR interferometric techniques from ground based system for the monitoring of landslides. In: International Geoscience and Remote Sensing Symposium (IGARSS) 6:2756–2758Google Scholar
  566. Tarchi D, Casagli N, Moretti S, Leva D, Sieber AJ (2003a) Monitoring landslide displacements by using ground-based synthetic aperture radar interferometry: application to the Ruinon landslide in the Italian Alps. J Geophys Res B: Solid Earth 108(8)Google Scholar
  567. Tarchi D, Casagli N, Fanti R, Leva DD, Luzi G, Pasuto A, Pieraccini M, Silvano S (2003b) Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy. Eng Geol 68(1–2):15–30Google Scholar
  568. Temesgen B, Mohammed MU, Korme T (2001) Natural hazard assessment using GIS and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiopia. Phys Chem Earth, Part C: Solar Terrest Planet Sci 26/9:665–675Google Scholar
  569. Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides. PhD thesis. ITC Publication 32, Enschede, Netherlands, 254 ppGoogle Scholar
  570. Terlien MTJ (1997) Hydrological landslide triggering in ash-covered slopes of Manizales (Colombia). Geomorphology 20:165–175Google Scholar
  571. Terlien MTJ, Van Westen CJ, Van Asch TWJ (1995) Deterministic modelling in GIS-based landslide hazards assessment. In: Carrara A, Guzzetti F (eds) Geographical information system in assessing natural hazards. Advances in Natural and Technological Hazards Research, vol 5. Kluwer, Dordrecht, pp 57–77Google Scholar
  572. Thein S, Schmanke V, Grunet J (1995) The production of a landslide-susceptibility map at the scale of 1:10.000 for the Katzenlochbach and Melb valley southwest of Bonn using a geo-information-system. Mitteilungen der Osterreichischen Geographischen Gesellschaft 137:93–104Google Scholar
  573. Thierry P, Vinet L (2002) Mapping an urban area prone to slope instability: Greater Lyons. Bull Eng Geol Environ 62:135–143Google Scholar
  574. Thornes JB, Alcántara-Ayala I (1998) Modelling mass failure in a Mediterranean mountain environment: climatic, geological, topographical and erosional controls. Geomorphology 24:87–100Google Scholar
  575. Tomlinson RF (1984) Geographic information systems—a new frontier. Oper Geogr 5:31–35Google Scholar
  576. Trajan Software (2001) Trajan 6.0 Professional—neural network simulator (manual). Protaprint, DurhamGoogle Scholar
  577. Trinh PT (2000) Remote sensing and GIS for warning of geological hazards: application in Vietnam. In: Zschau J, Kuppers AN (eds) Early warning systems for natural disaster reduction, proceedings, Potsdam, Germany, pp 753–762Google Scholar
  578. Turcotte DL (1999a) Application of statistical mechanism to natural hazards and landforms. Physica A 274:294–299Google Scholar
  579. Turcotte DL (1999b) Self-organized criticality. Rep Prog Phys 62:1377–1429Google Scholar
  580. Turcotte DL (2001) Self-organized criticality: does it have anything to do with criticality and is it useful? Nonlinear Proc Geophys 8:193–196Google Scholar
  581. Turcotte DL, Malamud BD (2004) Landslides, forest fires, and earthquakes: examples of self-organized critical behavior. Physica A 340:580–589Google Scholar
  582. Turcotte DL, Malamud BD, Guzzetti F, Reichenbach P (2002) Self-organization, the cascade model, and natural hazards. Coloquium, PNAS 99(1):2530–2537Google Scholar
  583. Turner AK (ed) (1992) Three-dimensional modelling with geoscientific information systems. NATO ASI Series, C, vol 354. Kluwer, Dordrecht, 452 ppGoogle Scholar
  584. Turner AK, Schuster RL (eds) (1996) Landslides: investigation and mitigation. Transportation Research Board Special Report 247. National Research Council, Washington, 673 ppGoogle Scholar
  585. Turrini MC, Visintainer P (1998) Proposal of a method to define areas of landslide hazard and application to an area of the Dolomites, Italy. Eng Geol 50:255–265Google Scholar
  586. Uromeihy A, Mahdavifar MR (2000) Landslide hazard zonation of the Khorshrostam area, Iran. Bull Eng Geol Environ 58:207–213Google Scholar
  587. Vähäaho I (1998) From geotechnical maps to three-dimensional models. Tunnelling Underground Space Technol 13(1):51–56Google Scholar
  588. Valadäo P, Gaspar JL, Queiroz G, Ferreira T (2002) Landslides density map of S. Miguel Island, Azores archipelago. Nat Hazard Earth Syst Sci 2:51–56Google Scholar
  589. Vallario A, Coppola L (1973) Geologia e franosita nell’area ad oriente del Taburno-Camposauro e del Partenio (Province di Benevento ed Avellino). Geologia Applicata e Idrogeologia, v. 8, pt. 1, pp 19–87. 1 map 1:50.000Google Scholar
  590. Van Beek LPH, Van Asch THWJ (2004) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304Google Scholar
  591. Van Westen CJ (2000) The modelling of landslide hazards using GIS. Surv Geophys 21:241–255Google Scholar
  592. Van Westen CJ (2004) Geoinformation tools for landslide risk assessment: an overview of recent developments. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor& Francis Group, London, pp 39–56Google Scholar
  593. Van Westen CJ, Lulie Getahun F (2003) Analyzing the evolution of the Tessina landslide using aerial photographs and digital elevation models. Geomorphology 54:77–89Google Scholar
  594. Van Westen CJ, Van Duren I, Kruse HMG, Tercien MTJ (1993) GISSIZ: training package for geographical information systems in slope instability zonation. ITC Publication, vol 15. International Institute for Aerospace and Earth Resources Survey, ITC, Enschede, 245 ppGoogle Scholar
  595. Van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomena through GIS-based hazard zonation. Geol Rundsch 86:404–414Google Scholar
  596. Van Westen CJ, Seijmonsbergen AC, Mantovani F (1999) Comparing landslide hazard maps. Nat Hazards 20:137–158Google Scholar
  597. Van Westen CJ, Soeters R, Sijmons K (2000). Digital geomorphological landslide hazard mapping of the Alpago area, Italy. IAG 2(1):51–60Google Scholar
  598. Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. In: Chacon J, Corominas J (eds) Special issue on Landslides and GIS. Nat Hazards 30(3):399–419Google Scholar
  599. Varnes DJ (1974) The logic of geological maps, with reference to their interpretation and use for engineering purposes. Geological Survey Professional Papers, 837. USGS, Washington, 48 ppGoogle Scholar
  600. Varnes DJ (1978) Slope movement types and processes: In: Schuster RL, Krizek RJ (eds) Landslides: analysis and control. Transportation Research Board Special Report 176. National Academy of Sciences, Washington, DC, pp 11–33Google Scholar
  601. Varnes DJ (1984) International Association of Engineering Geology Commission on Landslides and Other Mass Movements on Slopes. Landslide hazard zonation: a review of principles and practice. Int Assoc Eng Geol, UNESCO Natural Hazards Series no. 3, 63 ppGoogle Scholar
  602. Vaunat J, Leroueil S (2002) Analysis of post-failure slope movements within the framework of hazard and risk analysis. Nat Hazards 26:83–109Google Scholar
  603. Vecchia O (1978) A simple terrain index for the stability of hillsides or scarps. In: Geddes JD (ed) Large ground movements and structures. Wiley, New York Toronto, pp 449-461Google Scholar
  604. Ventakatachalam G, Nagesha MS, Dodagoudar GR (2002) Landslide modelling using remote sensing and GIS. IGARSS: IEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing: Integrationg our view of the Planet, Toronto, Canada, pp 2045–2047Google Scholar
  605. Vietmeier J, Wagner W, Dikau R (2000) Monitoring moderate slope movements (landslides) in the Southern French Alps using differential SAR interferometry. European Space Agency (special publication) ESA SP 478:559–563Google Scholar
  606. Vose D (1996) Quantitative risk analysis: a guide to Monte Carlo simulation modeling. Wiley, Chichester, 328 ppGoogle Scholar
  607. Wachal DJ, Hudak PF (2000) Mapping landslide susceptibility in Travis County, Texas, USA. GeoJournal 51:245–253Google Scholar
  608. Wang X, Jiang Y, Zhao Y, Pan L (2002) Study and application on the visualization of geological information system in landslideYanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 21(Suppl):2511–2514Google Scholar
  609. Wang X, He M, Jiang Y, Cui Z (2003) Stability analysis of landslide based on mechanics principle in GISYanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 22(6):977–980Google Scholar
  610. Ward TJ, Li RM, Simons DB (1982) Mapping landslide hazards in forest watersheds. J Geotech Eng Div—ASCE 108(2):319–324Google Scholar
  611. Wasowski J, Del Gaudio V, Pierri P, Capolongo D (2002) Factors controlling seismic susceptibility of the Sele valley slopes: the case of the 1980 Irpinia earthqhake re-examined. Surv Geophys 23:563–593Google Scholar
  612. Wei P, Da’an L, Zhifa Y, Qianbang Z, Siyuan Y, Huiya Z, Yanhui L (2004) A synthetic geological information system and its application to Xiangjiaba hydropower station. Paper 1B13 SINOROCK2004 symposium. Int J Rock Mech Min Sci 41(3):7Google Scholar
  613. Weibull W (1951) A statistical distribution of wide applicability. J Appl Mech 18:293–297Google Scholar
  614. Weidinger JT (1998) Case history and hazard analysis of two lake-damming landslides in the Himalayas. J Asian Earth Sci 16(2–3):323–331Google Scholar
  615. Wetzel HU, Roessner S, Sarnagoev A (2000) Remote sensing and GIS based geological mapping for assessment of landslide hazard in Southern Kyrgyztan (Central Asia). In: Brebbia CA, Pascolo P (eds) Management information systems 2000—GIS and remote sensing. Management information systems, vol 1. WIT Press, Ashurst, pp 355–366Google Scholar
  616. Wieczorek GF (1978) Landslide susceptibility evaluation in the Santa Cruz Range, San Mateo County, California. Berkeley, University of California, PhD Thesis, 278 ppGoogle Scholar
  617. Wieczorek GF (1984) Preparing a detailed landslide-inventory map for hazard evaluation and reduction. Bull Assoc Eng Geol 21(3):337–342Google Scholar
  618. Wilkinson PL, Anderson MG, Lloyd DM, Renaud J-P (2002) Landslide hazard zonation and bioengineering:towards providing improved decision support through integrated model development. Environ Model Softw 17:333–344Google Scholar
  619. Williamson JA (1975) Landslide susceptibility near Tomales Bay, California. San Francisco State University, California, Masters thesis, 113 ppGoogle Scholar
  620. Wilson RC, Keefer DK (1985) Predicting aerial limits of earthquake-induced landsliding. In: Ziony JI (ed) Evaluating earthquake hazards in the Los Angeles region—An Earth- Science perspective, USGS Professional paper 1360, pp. 316–345Google Scholar
  621. Woodward HB (1897) Soils and subsoils from a sanitary point of view; with especial reference to London and its neighbourhood 1st edn. Memoirs of the Geological Survey England and Wales. Her Majesty´s Stationery Office, LondonGoogle Scholar
  622. Worboys MF (1995) GIS: a computing perspective. Taylor and Francis, LondonGoogle Scholar
  623. Worboys MF, Duckham M (2004) GIS: a computing perspective, 2nd edn. CRC Press, UKGoogle Scholar
  624. WP/WLI (1990) A suggested method for reporting a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 41:5–12Google Scholar
  625. WP/WLI (1991) A suggested method for a landslide summary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 43:101–10Google Scholar
  626. WP/WLI (1993a) A suggested method for describing the activity of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). Bull Int Assoc Eng Geol 47:53–57Google Scholar
  627. WP/WLI (1993b) Multilingual landslide glossary. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman D. Cruden). BiTech, Richmond, 59 ppGoogle Scholar
  628. WP/WLI (1994) A suggested method for reporting landslide causes. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Int Assoc Eng Geol 50:71–74Google Scholar
  629. WP/WLI (1995) A suggested method for describing the rate of movement of a landslide. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Int Assoc Eng Geol 52:75–78Google Scholar
  630. WP/WLI (2001) A suggested method for reporting landslide remedial measures. International Geotechnical Societies’ UNESCO Working Party on World Landslide Inventory (Chairman M.E. Popescu). Bull Eng Geol Environ 60:69–74Google Scholar
  631. Wrigth RH, Nilsen TH (1974) Isopleth maps of landslide deposits, southern San Francisco Bay Region, California. US Geological Survey Field Studies Map MF-550. USGS, CaliforniaGoogle Scholar
  632. Wrigth RH, Campbell RH, Nilsen TH (1974). Preparation and use of isopleth maps of landslide deposits. Geology 2:483–485Google Scholar
  633. Wu Q, Ye S, Wu X, Chen P (2004) Risk assessment of earth fractures by constructing an intrinsic vulnerability map, a specific vulnerability map, and a hazard map, using Yuci City, Shanxi, China as an example. Environ Geol 46:104–112Google Scholar
  634. Xie QM, Xia YY (2004) Systems theory for risk evaluation of landslide hazard. Int J Rock Mech Min Sci, vol 41, no. 3, CD-ROM, Elsevier, NetherlandsGoogle Scholar
  635. Xie MW, Esaki T, Zhou GY, Mitani Y (2001) Effective data management for GIS-based critical slip searching. In: Ho KKS, Li KS (eds) Geotechnical engineering meeting society’s needs. A.A. Balkema, Rotterdam, pp 947–952Google Scholar
  636. Xie MW, Esaki T, Zhou GY, Mitani Y (2003) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. J Geotech Geoenviron Eng 129(12):1109–1118Google Scholar
  637. Xie M, Esaki T, Zhou G, Mitani Y (2003a) Geographic information systems-based three-dimensional critical slope stability analysis and landslide hazard assessment. J Geotech Geoenviron Eng 129(12):1109–1118Google Scholar
  638. Xie M-W, Zhou G-Y, Esaki T (2003c) GIS component based 3D landslide hazard assessment system: 3DSlopeGIS. Chin Geogr Sci 13(1):66–72Google Scholar
  639. Xie M, Tetsuro E, Zhou G (2003b) GIS method for slope-unit-based 3D landslide hazard evaluation.Yanshilixue Yu Gongcheng Xuebao/Chinese. J Rock Mech Eng 22(6):969–976Google Scholar
  640. Xie M, Esaki T, Cai M (2004a) A GIS-based method for locating the critical 3D slip surface in a slope. Comput Geotech 31:267–277Google Scholar
  641. Xie M, Esaki T, Cai M (2004b) A time-space based approach for mapping rainfall-induced shallow landslide hazard. Environ Geol 46:840–850Google Scholar
  642. Xie M, Esaki T, Zhou G (2004c) GIS-based probabilistic mapping of landslide hazard using a three-dimensional deterministic model. Nat Hazards 33:265–282Google Scholar
  643. Xie M, Esaki T, Mitani Y, Cai M (2004d) A 3D deterministic approach for mapping landslide hazards using GIS. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 97–102Google Scholar
  644. Ye X, Kaufmann H, Guo XF (2004) Landslide monitoring in the three Gorges area using D-INSAR and corner reflectors. Photogrammetric Eng Remote Sens 70(10):1167–1172Google Scholar
  645. Yi S, Sun Y (1997) Fractal characterization of regional landslide activities and its significance. Engineering Geology and the Environment, Proceedings symposium, Athens, 1:1155–1158Google Scholar
  646. Yokoy Y, Carr JR, Watters RJ (1995) Fractal character of landslides. Environ Eng Geosci 1(1):75–81Google Scholar
  647. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353Google Scholar
  648. Zadeh LA (1978) Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst 1:3–28Google Scholar
  649. Záruba Q, Mencl V (1961) Ingenieurgeologie. Berlin, Prague, 267 ppGoogle Scholar
  650. Záruba Q, Mencl V (1969) Landslides and their control. Elsevier, Amsterdam, 205 ppGoogle Scholar
  651. Zebker HA, Goldstein RM (1986) Topographic mapping from interferometric synthetic aperture radar observation. J Geophys Res 91:4993–4999CrossRefGoogle Scholar
  652. Zell A (1994) Simulation neuronaler Netze. Addison-Wesley, BonnGoogle Scholar
  653. Zerger A (2002) Examining GIS decision utility for natural hazard risk modelling. Environ Modell Softw 17:287–294Google Scholar
  654. Zêzere JL, Reis E, García R, Oliveira S, Rodrigues ML, Vieira G, Ferreira AB (2004a) Integration of spatial temporal data for the definition of different landslide hazard scenarios in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 4(1):133–146CrossRefGoogle Scholar
  655. Zêzere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004b) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda WA, Ehrlich M, Fontoura SAB, Sayao ASF (eds) Landslides: evaluation and stabilization. Balkema, Taylor & Francis Group, London, pp 117–124Google Scholar
  656. Zhang LQ, Yang ZF, Liao QL, Chen J (2004) An application of the rock engineering system (RES) methodology in rockfall hazard assessment on the Chengdu-Lhasa highway, China. SINOROCK 2004 Symposium. Int J Rock Mech Min Sci 41(3):1–6. CD-ROM. ElsevierGoogle Scholar
  657. Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modeling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68(3–4):373–386Google Scholar
  658. Zhou G, Song C, Simmer J, Cheng P (2004) Urban 3D GIS from LIDDAR and digital aerial images. Comput Geosci 30:345–353Google Scholar
  659. Zimmermann HJ (1996) Fuzzy set theory and its applications, 3rd edn. Kluwer, DordrechtGoogle Scholar
  660. Zinck JA, López J, Metternicht GI, Shresta D, Vázquez-Selem L (2001) Mapping and modelling mass movements and gullies in mountain areas using remote sensing and GIS techniques. JAG 3(1):43–53Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • J. Chacón
    • 1
  • C. Irigaray
    • 1
  • T. Fernández
    • 2
  • R. El Hamdouni
    • 1
  1. 1.Department of Civil EngineeringUniversity of GranadaGranadaSpain
  2. 2.Department of Photogrammetry, Geodesy and CartographyUniversity of JaenJaénSpain

Personalised recommendations