Advertisement

Determining actual LNAPL plume thickness: review and case study in a fractured aquifer

  • M. A. DippenaarEmail author
  • M. D. Sole
  • J. L. Van Rooy
  • G. J. du Toit
  • J. L. Reynecke
Original Paper

Abstract

Determining the thickness of a LNAPL (light non-aqueous phase liquid) hydrocarbon plume in the fractured rock surrounding a borehole is a very important aspect in determining the quantity and degree of contamination of the groundwater and soil, as well as deciding on applicable remediation measures. This review aims to compare some of the field and empirical methods to eventually propose a method of confirming the plausibility of the determined thickness. General insight is supplied relating to the occurrence of groundwater in the Earth’s crust, the basic principles of multiphase flow and the properties of the three fluids of importance, being water, Jet A-1 fuel and air. From the methods applied, the field bail-down method of Hughes et al. and the mathematical approach according to CONCAWE supplied reasonable results, with the Zillox and Muntzer equation providing no rational outcome due to changing water levels from regular bailing of the LNAPL. Furthermore, practically none of these methods have been developed for deep, fractured aquifers. By plotting regular depths to water and fuel on the abscissa axis with free product thickness on the ordinate, the depth to water and depth to fuel linear plots will intersect where the free product thickness equals zero. This indicates the static water level (i.e., the ground water level prior to hydrocarbon contamination) and by subtracting this from the free product depth, a maximum product thickness is obtained.

Keywords

LNAPL Hydrocarbon Free phase Fractured aquifer Bail-down test Concawe 

Résumé

La détermination de l’épaisseur d’un panache LNAPL d’hydrocarbures dans un milieu rocheux fracturé, autour d’un forage, est un sujet très important pour l’identification d’une contamination des eaux souterraines et des sols, ainsi que pour les décisions concernant les mesures curatives. L’article vise à comparer quelques unes des méthodes de terrain et des méthodes empiriques afin de proposer une méthode de détermination de l’épaisseur d’un tel panache. Des éléments généraux relatifs aux eaux souterraines, aux écoulements multiphasiques et aux propriétés de trois fluides importants : l’eau, le fioul et l’air sont donnés. La méthode d’extraction in situ de Hugues et al. et l’approche mathématique suivant Concawe ont apporté des résultats raisonnables, les équations de Zillox et Muntzer ne donnant pas de résultats interprétables du fait des changements de niveau d’eau associés à l’extraction des LNAPL. De plus, pratiquement aucune de ces méthodes n’a été développée pour des aquifères profonds et fracturés. En mettant en rapport les profondeurs de l’eau et du fioul en abscisse avec l’épaisseur de produit libre en ordonnée, les courbes profondeur d’eau et profondeur de fioul se croisent lorsque l’épaisseur de produit libre est nulle. Ceci donne la profondeur de la surface piézométrique (i.e., avant la contamination par hydrocarbure) et en soustrayant cette valeur de la profondeur du produit libre, une épaisseur maximale de produit est obtenue.

Mots clés

LNAPL Hydrocarbure Phase libre  Aquifère fracturé  Test d’extraction 

Notes

Acknowledgements

The authors would like to thank the Department of Public Works for permission to use the data for the case study.

References

  1. Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  2. Bedient PB, Rifai HS, Newell CJ (1999) Ground water contamination: transport and remediation, 2nd edn. Prentice Hall PTR, USAGoogle Scholar
  3. Brady JE, Holum JR (1996) Chemistry: the study of matter and its changes. 2nd edn. Wiley, USAGoogle Scholar
  4. Brost EJ, DeVaull GE (2000) Non-aqueous phase liquid (NAPL) mobility limits in soil, soil and Groundwater Research Bulletin, June 2000, No. 9, American Petroleum Institute (API), http://www.api.org
  5. Bucknam PC (2000) Jet Fuel A/A-1, http://www.hess.com/about/msds/JetA_0325_clr.pdf
  6. CONCAWE (de Pastrovich TL, Baradat Y, Barthel R, Chiarelli A, Fussell DR 1979): Protection of groundwater from oil pollution, CONCAWE Report No. 3/79, The HagueGoogle Scholar
  7. Corey AT (1986) Mechanics of immiscible fluids in porous media.Water Resources Publications, LittletonGoogle Scholar
  8. Durnford D, Brookman J, Billica J, Milligan J (1991) LNAPL distribution in a cohesionless soil: a field investigation and cryogenic sampler. Groundwater Monitoring Rev 11(3):115–122CrossRefGoogle Scholar
  9. Fetter CW (1999) Contaminant hydrogeology, 2nd edn. Prentice Hall, New JerseyGoogle Scholar
  10. Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice Hall, New JerseyGoogle Scholar
  11. Gale JE (1982) Assessing the permeability characteristics of fractured rock, GSA Special Paper 189, Geological Society of America, Boulder, pp163–181Google Scholar
  12. Gruszczenski TS (1987) Determination of a realistic estimate of the actual formation product thickness using monitoring wells: a field bailout test. In: Proceedings of the National Water Well Association of Ground Water Scientists and Engineers and the American Petroleum Institute Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration, Nov 1988, pp235–253Google Scholar
  13. Hall R, Blake SB, Champlin SC Jr (1984) Determination of hydrocarbon thickness in sediments using borehole data. In: Proceedings of the National Water Well Association of Ground Water Scientists and Engineers, Fourth National Symposium on Aquifer Restoration and Groundwater Monitoring, pp300–304Google Scholar
  14. Heath RC (1995) Basic ground-water hydrology, US Geological Survey Water-Supply Paper 2220, DenverGoogle Scholar
  15. Hughes JP, Sullivan CR, Zinner RE (1988) Two techniques for determining the true hydrocarbon thickness in an unconfined sandy aquifer. In: Proceedings of the National Water Well Association of Ground Water Scientists and Engineers and the American Petroleum Institute Conference on Petroleum Hydrocarbons and Organic Chemicals in Ground Water: Prevention, Detection and Restoration, vol 1 (Nov 1988), pp291–314Google Scholar
  16. Kramer WH (1982) Ground water pollution from gasoline. Groundwater Monitoring Rev 2(2):18–22CrossRefGoogle Scholar
  17. Martin JP, Koerner RM (1984b) The influence of vadose zone conditions on groundwater pollution, part II: fluid movement. J Hazard Materials 9:181–207CrossRefGoogle Scholar
  18. McBride D (1999) Chemicals in jet fuel emissions (question 8 of the August 1998 work plan), Washington State Department of Health, OlympiaGoogle Scholar
  19. McCuen RH (1989) Hydrologic analysis and design, ISBN 0-13-447954-8, pp241–242, http://www.microirrigationforum.com/new/archives/capfrng.html
  20. Mercer JW, Spalding CP (1991a) Chapter 2: site characterization overview. In: USEPA, site characterization for subsurface remediation, United States Environmental Protection Agency (USEPA), EPA Seminar Publication EPA/625/4-91/026, WashingtonGoogle Scholar
  21. Mercer JW, Spalding CP (1991b) Chapter 6: characterization of water movement in saturated fractured media. In: USEPA, Site characterization for subsurface remediation, United States Environmental Protection Agency (USEPA), EPA Seminar Publication EPA/625/4-91/026, WashingtonGoogle Scholar
  22. Paker JC, Lenhard RJ, Kuppusamy T (1987) A parametric model for constitutive properties governing multiphase flow in porous media. Water Resour Res 23(4):618–624CrossRefGoogle Scholar
  23. Park RG (1997) Foundations of structural geology. Chapman & Hall, Great BritainGoogle Scholar
  24. Parker JC, Lenhard RJ (1989) Vertical integration of three phase flow equations for analysis of light hydrocarbon plume movement: transport in porous media, Testa SM Winegardner DL (1991)Google Scholar
  25. Schiegg HO (1985) Considerations on water, oil and air in porous media. Water Sci Technol 17:467–476Google Scholar
  26. Shephard WD (1983) Practical geohydrological aspects of ground-water contamination. In: Proceedings of the National Water Well Association of Groun d Water Scientists and Engineers, Third National Symposium on Aquifer Restoration and Ground Water Monitoring, pp365–372Google Scholar
  27. Sililo OTN, Conrad J, Murphy KOH, Tredoux G, Eigenhuis B, Ferguson MCD, Moolman JH (1999) Investigation of the contaminant attenuation characteristics of the soil aquifer system with special emphasis on the vadose zone, WRC Report No. 572/1/99, Water Research CommissionGoogle Scholar
  28. Sole M (2003) Characterization and modeling of a fractured acid crystalline rock aquifer due to hydrocarbon contamination, MSc Thesis (submitted), University of Pretoria, PretoriaGoogle Scholar
  29. Testa SM, Winegardner DL (1991) Restoration of petroleum-contaminated aquifers. Lewis Publishers, Florida, pp81–116Google Scholar
  30. US EPA (1996) How to effectively recover free product at leaking underground storage sites, EPA 510-R-96-001, September 1996, United States Environmental Protection Agency, Washington, http://www.epa.gov/swerust1/pubs
  31. Van Schalkwyk A, Vermaak JJG (2000) The relationship between the geotechnical and hydrogeological properties of residual soils and rocks in the vadose zone, WRC Report No. 701/1/11, Water Research CommissionGoogle Scholar
  32. Van Dam (1967) The migration of hydrocarbons in a water-bearing stratum. In: Hepple P (eds) The joint problems of the oil and water industries, London Institute of Petroleum, pp55–96Google Scholar
  33. Weather Bureau Information Cellular Phone (2002) +27 (0)82 233 8484, South AfricaGoogle Scholar
  34. Witherspoon PA, Long JCS, Majer EL, Myer LR (1987) A new seismic hydraulic approach to modeling flow in fractured rocks. In: Proceedings of NWWA/IGWMC conference on solving ground-water problems with models (Denver, CO), National Water Well Association, Dublin, pp793–826Google Scholar
  35. Wright EP (1992) The hydrogeology of crystalline basement aquifers in Africa, Geological Society Special Publication No. 66, UK, pp1–27Google Scholar
  36. Yaniga PM, Demko DJ (1983) Hydrocarbon contamination of carbonate aquifers: assessment and abatement. In: Proceedings of the National Water Well Association of Ground Water Scientists and Engineers Third National Symposium on Aquifer Restoration, pp60–65Google Scholar
  37. Young HD (1992) University physics, 8th edn. Addison Wesley Publishing Company, USAGoogle Scholar
  38. Zilliox L, Muntzer P (1975) Effects of hydrocarbon processes on the development of ground-water pollution: study on physical models in a saturated porous medium. Progress in Water Technology 7:561–568Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • M. A. Dippenaar
    • 1
    Email author
  • M. D. Sole
    • 2
  • J. L. Van Rooy
    • 3
  • G. J. du Toit
    • 1
  • J. L. Reynecke
    • 1
  1. 1.Geo Pollution TechnologiesPretoriaSouth Africa
  2. 2.Dept. Water Affairs and ForestryNelspruitSouth Africa
  3. 3.Dept. of GeologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations