Electrokinetic strengthening of soft clay using the anode depolarization method

  • Pornpong AsavadorndejaEmail author
  • Ulrich Glawe
Original Paper


Electrokinetic stabilization is an innovative and cost effective ground improvement method for soft soils. With this method, stabilizing agents are electrically injected into the soils to achieve stabilization by means of ion exchange, precipitation or mineralization. The method is not yet widely accepted for common application as it improves the strength of soils only within a limited area. When coupled with a depolarization technique, the quality of the soil improvement is enhanced. Calcium ions are electrically injected into soils to replace monovalent ions while hydrogen ions, generated from electrolysis at the anode, are prevented from migrating into soils by continuous depolarization at the anode reservoir. However, hydroxide ions, generated at the cathode, are able to migrate into the soils. The injected calcium ions and hydroxide ions react with the dissolved silicates and aluminates in the clay to form cementing agents—calcium silicates and/or aluminum hydrates. Increases in strength of up to 170% immediately after treatment and up to 570% after a 7-day curing were measured. These results demonstrate that this simple technique could significantly improve the quality of electrokinetic stabilization in soft soils.


Ground improvement Soft ground Electrokinetic stabilization Electrochemical stabilization 


La stabilisation électrocinétique est une méthode innovante et économique d’amélioration des sols mous. Par cette méthode, des agents chimiques sont injectés électriquement dans le sol pour obtenir une stabilisation grâce à des processus d’échanges ioniques, de précipitation et de minéralisation. La méthode n’est pas encore largement appliquée dans la mesure où l’amélioration de la résistance du sol ne se réalise que dans une zone limitée. Les ions calcium sont électriquement injectés dans le sol et remplacent des ions monovalents, tandis que les ions hydrogène, résultant de l’électrolyse et produits à l’anode, ne peuvent migrer dans le sol du fait de la dépolarisation continue à l’anode. Cependant, les ions hydroxyde, produits à la cathode, peuvent migrer dans le sol. Les ions calcium injectés et les ions hydroxyde réagissent avec les silicates et aluminates dissous, provenant des argiles, pour former des agents de cimentation – des silicates de calcium et/ou des hydrates d’aluminium. Des augmentations de résistance jusqu’à 170% immédiatement après le traitement et jusqu’à 570% après un traitement de 7 jours ont été mesurées. Ces résultats démontrent que cette technique simple pourrait améliorer de façon significative la qualité de la stabilisation électrocinétique des sols mous.

Mots clés

Amélioration des sols Sols mous Stabilisation électrocinétique Stabilisation électrochimique 


  1. Acar YB, Hamed J, Alshawabkeh A, Gale R (1994) Cd(II) Removal from saturated kaolinite by application of electrical current. Gèotechnique 44:239–254Google Scholar
  2. Alshawabkeh AN, Sheahan TC (2003) Soft soil stabilisation by ionic injection under electric fields. Ground Improv 7:177–185CrossRefGoogle Scholar
  3. Assarson K, Broms B, Granholm S, Paus K (1971) Deep stabilization of soft cohesive soils. Linden Alimark, Sweden, p 20Google Scholar
  4. Baker JE, Rogers CDF, Boardman DI, Peterson (2004) Electrokinetic stabilization: an overview and case study. Ground Improv 8:47–58CrossRefGoogle Scholar
  5. Bergado DT, Lorenzo GA, Balasubramaniam AS (2000) A comparison of engineering behavior of cement treated and lime treated soft Bangkok Clay. In: Proceedings of the 12th Asian regional conference on soil mechanics and geotechnical engineering, vol 1, pp 449–452Google Scholar
  6. Diamond S, Kinter EB (1965) Mechanisms of soil-lime stabilization—an interpretative review. Highway Res Rec 92:83–102Google Scholar
  7. Esrig MI, Gemeinhardt JP (1967) Electrokinetic stabilization of an illitic clay. J Soil Mech Found Eng Div ASCE 93:109–128Google Scholar
  8. Eykholt GR (1997) Development of pore pressures by nonuniform electroosmosis in clays. J Hazard Mater 55:171–186CrossRefGoogle Scholar
  9. Eykholt GR, Daniel DE (1994) Impact of system chemistry on electroosmosis in contaminated soil. J Geotech Eng ASCE 120:797–815CrossRefGoogle Scholar
  10. Gray DH (1970) Electrochemical hardening of clay soils. Géotechnique 20:81–93CrossRefGoogle Scholar
  11. Hamed JT, Bhadra A (1997) Influence of current density and pH on electrokinetics. J Hazard Mater 55:279–294CrossRefGoogle Scholar
  12. Kamruzzaman AHM (1998) Chemical stabilization of Bangkok Clay: addition of salts and other additives. Asian Institute of Technology, Bangkok, p 34Google Scholar
  13. Mohamedelhassan E, Shang JQ (2002) Effect of electrode materials and current intermittence in electro-osmosis. Ground Improv 5:3–11CrossRefGoogle Scholar
  14. Ozkan S, Gale RJ, Seals RK (1999) Electrokinetic stabilization of kaolinite by injection of Al and PO43− ions. Ground Improv 3:135–144Google Scholar
  15. Page MM, Page CL (2002) Electroremediation of contaminated soils. J Environ Eng ASCE 128:208–219CrossRefGoogle Scholar
  16. Segall BA, Bruell CJ (1992) Electroosmotic contaminant-removal processes. J Environ Eng ASCE 118:84–100CrossRefGoogle Scholar
  17. Wada S-I, Umegeki Y (2001) Major ion and electrical potential distribution in soil under electrokinetic remediation. Environ Sci Technol 35:2151–2155CrossRefPubMedGoogle Scholar
  18. West LJ, Steward DI, Binley AM, Shaw B (1999) Resistivity imaging of soil during electrokinetic transport. Eng Geol 53:205–215CrossRefGoogle Scholar
  19. Yeung AT, Sade SM, Mitchell JK (1992) A new apparatus for the evaluation of electro-kinetic processes in hazardous waste management. Geotech Test J 15:207–216CrossRefGoogle Scholar
  20. Yeung AT, Scott TB, Gopinath S, Menon RM, Hsu C-N (1997) Design, fabrication, and assembly of and apparatus for electrokinetic remediation studies. Geotech Test J 20:199–210Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  1. 1.GTE Program, School of Civil EngineeringAsian Institute of TechnologyKlong Luang, PathumthaniThailand

Personalised recommendations