Advertisement

The provision of digital spatial data for engineering geologists

  • M.G. Culshaw
  • I. Jackson
  • J.R.A. Giles
Original Paper

Abstract

Until recently most spatial geological information was in analogue (mainly paper) form, which made it expensive to store and often difficult to use because of its increasing fragility. However, with the rapid advances in information technology in the last 20 years, not only has it become relatively easy to digitise or digitally scan historical information but, increasingly, data suppliers are, themselves, producing the raw data in digital form. This brings with it a host of new problems for the acquisition, management and dissemination of the information. These issues include data collection (what, where, how and by whom), data management and security (metadata, validation, backup, access), data access (how, where and at what price) and the provision of value-added products based on the data tailored to the needs of specific users. For engineering geologists, the historical acquisition of geological data in various forms is on the verge of delivering a whole range of new products that should alter the way in which site investigation is carried out.

Keywords

Site investigation Digital data Data collection Data management Data dissemination 

Résumé

Jusqu’à une époque récente, la plupart des informations géologique spatialisées se présentait sous forme analogique (et principalement sous forme papier), ce qui rendait coûteux leur stockage et difficile leur utilisation du fait de leur fragilité. Avec les progrès rapides des technologies de l’information durant les derniers vingt ans, non seulement il est devenu facile de numériser et scanner des informations à caractère historique mais encore les fournisseurs de données eux-mêmes produisent de plus en plus de données brutes sous forme numérique. Ceci s’accompagne de l’arrivée de nouvelles difficultés pour l’acquisition, la gestion et la divulgation de l’information ainsi que pour la fourniture de produits à valeur ajoutée adaptés aux besoins de nouveaux usagers. Pour les spécialistes de géologie de l’ingénieur, l’acquisition de données géologiques sous diverses formes est au seuil d’une production d’une large gamme de produits nouveaux qui pourraient modifier la façon de conduire les reconnaissances géologiques de sites.

Mots clés

Reconnaissances géologiques Données numériques Gestion de données Divulgation de connaissances 

Notes

Acknowledgement

This paper is published with the permission of the Executive Director of the British Geological Survey (NERC).

References

  1. Alker SC, Duffy TR, Swetnam RD, Bealey W, Bell P, Careless J, Culshaw MG, Davies H, Fowler D, Gibson A, Leeks GJL, Lelliott M, Lowndes J, McBridge D, Nathanail CP, Packman JC, Wadsworth R, Wyatt B (2002) Integrating environmental information into a decision support tool for urban planning—an environmental information system for planners (EISP). In: Fendle EM, Jones K, Laurini R, Rumor M (eds) 30 years of UDMS—looking back, looking forward. Proceedings of the 23rd Urban Data Management Society symposium, Prague, 1–4 October 2002. Urban Data Management Society, Delft, pp. VI.29–VI.40Google Scholar
  2. Anon (1950) Site investigations Civil Engineering Code of Practice No. 1. The Institution of Civil Engineers, London, pp 128Google Scholar
  3. Anon (1957) Site investigations British Standard Code of Practice CP 2001. British Standards Institution, London, pp 123Google Scholar
  4. Anon (1970) The logging of core for engineering purposes. Report of the Geological Society Engineering Group Working Party. Q J Eng Geol 3:1–24Google Scholar
  5. Anon (1972) The preparation of maps and plans in terms of engineering geology. Report of the Geological Society Engineering Group Working Party. Q J Eng Geol 5:293–382Google Scholar
  6. Anon (1977) The description of rock masses for engineering purposes. Report of the Geological Society Engineering Group Working Party. Q J Eng Geol 10:355–388Google Scholar
  7. Anon (1981a) Code of practice for site investigations BS5930. British Standards Institution, London, pp 147Google Scholar
  8. Anon (1981b) Basic geotechnical description of rock masses. Int J Rock Mech Min Sci Geomech Abstr 18:85–110Google Scholar
  9. Anon (1981c) Rock and soil description and classification for engineering geological mapping. Report of the International Association of Engineering Geology Commission on Engineering Geological Mapping. Bull Int Assoc Eng Geol 24:235–274Google Scholar
  10. Anon (1995) Description and classification of weathered rocks for engineering purposes. Report of a Working Party of the Engineering Group of the Geological Society. Q J Eng Geol 28:207–242Google Scholar
  11. Anon (1999a) Electronic transfer of geotechnical data from ground investigations. 3rd edn. Association of Geotechnical and Geoenvironmental Specialists, London, pp 80Google Scholar
  12. Anon (1999b) Code of practice for site investigations BS5930. British Standards Institution, London, pp 204Google Scholar
  13. Anon (2001) Information and documentation—records management—part 1: general. International Organisation for Standardization, Geneva. ISO 15489–1:2001Google Scholar
  14. Anon (2003) Geographic information—metadata. International Organisation for Standardization, Geneva. ISO 19115:2003Google Scholar
  15. Culshaw MG (2004) The first engineering geological publication in the UK? Q J Eng Geol Hydrogeol 37:227–231CrossRefGoogle Scholar
  16. Culshaw MG (2005) From concept towards reality: developing the attributed 3D geological model of the shallow subsurface. Q J Eng Geol Hydrogeol 38:231–284CrossRefGoogle Scholar
  17. Culshaw MG, Kelk B (1994) A national geo-hazard information system for the UK insurance industry—the development of a commercial product in a geological survey environment. In: Proceedings of the 1st European congress, vol. 4, Paper 111. Regional Geological Cartography and Information Systems, Bologna, Italy, 3 ppGoogle Scholar
  18. Fookes PG, De Freitas MH, Culshaw MG (2005) Discussion of the first engineering geological publication in the UK? In: Culshaw MG (ed) Q J Eng Geol Hydrogeol 37:227–231; Q J Eng Geol Hydrogeol 38:215–219Google Scholar
  19. Jackson I, Green C (2003) DigMapGB—the digital geological map of Great Britain. Geoscientist 13(2):4–7Google Scholar
  20. Jones RJA, Hallett SH, Gibbons JW, Jarvis MG (1995) Subsidence risk—using a complex dataset to identify areas most at risk. In: Proceedings of the AGI 95 conference, 21–23 November 1995, Birmingham, UK, pp. 2.4.1–2.4.6Google Scholar
  21. Site Investigation Steering Group (1993) Without site investigation ground is a hazard. Site Investigation in Construction Series, No. 1. Thomas Telford Services Ltd., London, pp 45Google Scholar
  22. Thorleifson LH, Pyne DM (2003) Conversion of lithological data in the Manitoba Water Well Database (GWDrill) to a Mappable Format. http://www.pubs.usgs.gov/of/2003/of03–471/pdf/thorleifson.pdf
  23. West G, Rose EPF (2005) Discussion of the first engineering geological publication in the UK? In: Culshaw MG (ed) Q J Eng Geol Hydrogeol 37:227–231; Q J Eng Geol Hydrogeol 38:215–219Google Scholar
  24. Woodward HB (1897) Soils and subsoils from a sanitary point of view; with especial reference to London and its neighbourhood. Memoirs of the Geological Survey England and Wales. 1st edn. Her Majesty’s Stationery Office, LondonGoogle Scholar

Copyright information

© British Geological Survey 2006

Authors and Affiliations

  1. 1.British Geological SurveyNottinghamUK

Personalised recommendations