Advertisement

Landslide hazard and risk zonation—why is it still so difficult?

  • C.J. van Westen
  • T.W.J. van Asch
  • R. Soeters
Original Paper

Abstract

The quantification of risk has gained importance in many disciplines, including landslide studies. The literature on landslide risk assessment illustrates the developments which have taken place in the last decade and that quantitative risk assessment is feasible for geotechnical engineering on a site investigation scale and the evaluation of linear features (e.g., pipelines, roads). However, the generation of quantitative risk zonation maps for regulatory and development planning by local authorities still seems a step too far, especially at medium scales (1:10,000–1:50,000). This paper reviews the problem of attempting to quantify landslide risk over larger areas, discussing a number of difficulties related to the generation of landslide inventory maps including information on date, type and volume of the landslide, the determination of its spatial and temporal probability, the modelling of runout and the assessment of landslide vulnerability. An overview of recent developments in the different approaches to landslide hazard and risk zonation at medium scales is given. The paper concludes with a number of new advances and challenges for the future, such as the use of very detailed topographic data, the generation of event-based landslide inventory maps, the use of these maps in spatial-temporal probabilistic modelling and the use of land use and climatic change scenarios in deterministic modelling.

Keywords

Landslide risk Risk zonation Probabilistic modelling Deterministic modelling 

Résumé

La quantification des risques a pris de l’importance dans beaucoup de disciplines, y compris dans les études de glissements de terrain. La documentation sur l’évaluation des risques de glissement illustre les développements réalisés durant les derniers dix ans, montrant l’apport de ces approches dans les reconnaissances géologiques de sites et les études de tracés linéaires (e.g., pipelines, routes). Cependant la production de cartes de zonage des risques pour l’aménagement du territoire pour les besoins des autorités locales semble encore un objectif lointain, spécialement pour les échelles intermédiaires (1/10000 à 1/50000). Cet article fait le point sur les essais de quantification des risques de glissements de terrain sur de grandes régions, présentant les différentes difficultés relatives aux inventaires de glissements incluant des données sur la date, le type et le volume du glissement, la détermination des probabilités d’occurrence spatiale et temporelle, la modélisation des propagations de débris et l’évaluation des vulnérabilités. Une vue d’ensemble est présentée concernant les différentes approches du zonage des risques de glissements de terrain aux échelles moyennes. L’article conclut avec diverses avancées récentes et défis pour le futur, tels que l’utilisation de cartes topographiques très détaillées, la production de cartes d’inventaires de glissements, l’utilisation de ce type de cartes dans les modélisations probabilistes et la prise en compte de scénarios relatifs à l’aménagement du territoire et aux changements climatiques dans les modélisations déterministes.

Mots clés

Risque de glissement de terrain Zonage de risque Modélisation probabiliste Modélisation déterministe 

Notes

Acknowledgements

We would like to thank Niek Rengers for the very pleasant cooperation we have had with him during his career at ITC. We appreciate his guidance, support, advice and friendship, and finally also his efforts in commenting on the writing of this paper.

References

  1. AGSO (2001) Natural hazards and the risk they pose to South-East Queenland. AGSO-Geoscience Australia. Digital report on CD-ROM, pp 389Google Scholar
  2. AGS: Australian Geomechanics Society and Sub-committee on landslide risk management (2000) Landslide risk management concepts and guidelines. Aust Geomech 35(1):49–92Google Scholar
  3. Aleotti P, Chowdury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ: 21–44Google Scholar
  4. Anderson MG, Howes S (1985) Development and application of a combined soil water-slope stability model. Q J Eng Geol 18:525–530CrossRefGoogle Scholar
  5. Avolio MV, Di Gregorio S, Mantovani F, Pasuto A, Rongo R, Silvano S, Spataro W (2000) Simulation of the 1992 Tessina landslide by a cellular automata model and future hazard scenarios. Int J Appl Earth Obs Geoinf 2(1):41–50CrossRefGoogle Scholar
  6. Barredo JI, Benavides A, Hervas J, Van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. ITC J (1):9–23Google Scholar
  7. Binaghi E, Luzi L, Madella P, Rampini A (1998) Slope instability zonation: a comparison between certainty factor and fuzzy Dempster–Shafer approaches. Nat Hazards 17:77–97CrossRefGoogle Scholar
  8. Blake TF, Hollingsworth RA, Stewart JP, D’Antonio R, Earnest J, Gharib F, Horsman L, Hsu D, Kupferman S, Masuda R, Pradel D, Real C, Reeder W, Sathialingam N, Simantob E (2002) Recommended procedures for implementation of DMG special publication 117 guidelines for analyzing and mitigating landslide hazards in California. Southern California Earthquake Center, Los Angeles, California, p 110Google Scholar
  9. Bogaard TA, Van Asch TWJ (2002) The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf Process Landforms 27:1177–1188CrossRefGoogle Scholar
  10. Bonham-Carter GF (1996) Geographic Information Systems for geoscientists, modelling with GIS. Pergamon Press, Oxford, pp 398Google Scholar
  11. Bruno F, Martillier F (2000) Test of high-resolution seismic reflection and other geophysical techniques on the Boup landslide in: The Swiss Alps. Surv Geophys 21(4):335–350CrossRefGoogle Scholar
  12. Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geographiska Annalers 62A(1–2):23–27CrossRefGoogle Scholar
  13. Carrara A,Cardinali M,Guzzetti F, Reichenbach P (1995) GIS-based techniques for mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Publications, Dordrecht, pp 135–176Google Scholar
  14. Carrara A, Guzzetti F, Cardinali M, Reichenbach P (1999) Use of GIS technology in the prediction and monitoring of landslide hazard. Nat Hazards 20(2–3):117–135CrossRefGoogle Scholar
  15. CEOS (2001) Committee on Earth Observation Satellites. The use of earth observing satellites for hazard support: assessments & scenarios. http://disaster.ceos.org/
  16. Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4):269–288CrossRefGoogle Scholar
  17. Chung CF, Fabbri AG (1999) Probabilistic prediction models for landslide hazard mapping. Photogrammetric Eng Remote Sens 65(12):1389–1399Google Scholar
  18. Chung CJ, Fabbri A, Van Westen CJ (1995) Multivariate regression analysis for landslide hazard zonation. In: Carrara A, Guzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Publications, Dordrecht, pp 107–133Google Scholar
  19. Coe JA, Michael JA, Crovelli RA ,Savage WZ , Laprade WT, Nashem WD (2004a) Probabilistic assessment of precipitation triggered landslides using historical records of landslide occurrence, Seattle, Washington. Environ Eng Geosc X(2):103–122CrossRefGoogle Scholar
  20. Coe JA, Godt JW, Baum RL, Bucknam RC, Michael JA (2004b) Landslide susceptibility from topography in Guatemala. In: Lacerda WA et al. (ed) Landslides, evaluation & stabilization. Proceedings of the 9th international symposium on landslides, Rio de Janeiro 1:69–79Google Scholar
  21. Colesanti C, Wasowski J (2004) Satellite SAR interferometry for wide-area slope hazard detection and site-specific monitoring of slow landslides. In: Lacerda WA et al. (ed) Landslides, evaluation & stabilization. Proceedings 9th international symposium on landslides, Rio de Janeiro 1:117–125Google Scholar
  22. Corominas J (2000) Landslides and Climate. In: Bromhead EN (ed) VIII international symposium on landslides, Cardiff, UK, Keynote lectures, CD_ROMGoogle Scholar
  23. Crosta GB, Agliardi F (2002) How to obtain alert velocity thresholds for large rockslides. Phys Chem Earth Parts A/B/C 27(36):1557–1565CrossRefGoogle Scholar
  24. Crovelli RA (2000) Probability models for estimation of number and costs of landslides. U.S. Geological Survey Open File Report OO-249, 23 p http://greenwood.cr.usgs.gov/pub/open-file-reports/ofr-00–0249/
  25. Crozier MJ, Glade T (1999) Frequency and magnitude of landsliding; fundamental research issues. Zeitschrift fur Geomorphologie NF Suppl Bd 115:141–155Google Scholar
  26. Cruden D, Fell R (eds) (1997) Landslide risk assessment—Proceedings of the workshop on landslide risk assessment, Honolulu, Hawaii, USA, 19–21 February 1997. A.A. Balkema, Rotterdam & Brookfield, 384 ppGoogle Scholar
  27. Dai FC, Lee CF (2003) A spatiotemporal probabilistic modelling of storm induced shallow landsliding using aerial photographs and logistic regression. Earth Surf Process Landforms 28(5):527–545CrossRefGoogle Scholar
  28. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87CrossRefGoogle Scholar
  29. Davis TJ, Keller CP (1997) Modelling uncertainty in natural resource analysis using fuzzy sets and Monte Carlo simulation: slope stability prediction. Int J Geogr Inf Sci 11(5):409–434CrossRefGoogle Scholar
  30. De Joode A, Van Steijn H (2003) PROMOTOR-df: a GIS-based simulation model for debris-flow hazard prediction. In: Rickenmann D, Chen Ch-L (eds) Debris-flow hazards mitigation: mechanics, prediction, and assessment. Mill Press, Rotterdam, pp 1173–1184Google Scholar
  31. De La Ville N, Diaz AC, Ramirez D (2002) Remote sensing and GIS technologies as tools to support sustainable management of areas devastated by landslides. Environ Dev Sustainability 4(2):221–229CrossRefGoogle Scholar
  32. Dietrich WE, Bellugi D, Real de Asua R (2001) Validation of the shallow landslide model, SHALSTAB, for forest management. In: Wigmosta MS, Burges SJ (eds) Land use and watersheds: human influence on hydrology and geomorphology in urban and forest areas: American Geophysical Union, Water Science and Applications 2:195–227Google Scholar
  33. Dikau R, Cavallin A, Jager S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15(3/4):227–239CrossRefGoogle Scholar
  34. Dymond JR, Jessen MR, Lovell LR (1999) Computer simulation of shallow landsliding in New Zealand hill country. ITC J (2):122–131Google Scholar
  35. Einstein HH (1997) Landslide risk—systematic approaches to assessment and management. In: Cruden D, Fell R (eds) Landslide risk assessment. AA Balkema, Rotterdam, pp 25–25Google Scholar
  36. Ercanoglu M, Gokceoglu C (2001) Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Bull Eng Gol Env 41(6):720–730Google Scholar
  37. Fan JC, Liu CH, Wu MF, Yu SK (2003) Determination of critical rainfall thresholds for debris-flow occurrence in central Taiwan and their revision after the 1999 Chi-Chi great earthquake. In: Rickenmann D (ed) Third debris-flow hazard mitigation, DavosGoogle Scholar
  38. Faure RM et al (1988) Xpent, expert system in slope stability (in French). In: Bonnard C (ed), Proceedings of the 5th international symposium on landslides, Lausanne. AA Balkema, Rotterdam, pp 625–629Google Scholar
  39. Fell R (1994) Landslide risk assessment and acceptable risk. Can Geotech J 31:261–272CrossRefGoogle Scholar
  40. Fell R, Hartford D (1997) Landslide risk management. In: Cruden D, Fell R (eds) Landslide risk assessment. Balkema, Rotterdam, pp 51–109Google Scholar
  41. FEMA (2004) Federal Emergency Management Agency: HAZUS-MH. Software tool for loss estimation. [Online]. http://www.fema.gov/hazus/index.shtm (Verified: 10/12/2004)
  42. Finlay PJ, Fell R (1997) Landslides: risk perception and acceptance. Can Geotech J 34(6):169–188CrossRefGoogle Scholar
  43. Finlay PJ, Fell R, Maguire PK (1997) The relationship between the probability of landslide occurrence and rainfall. Can Geotech J 34(6):811–824CrossRefGoogle Scholar
  44. Flageollet JC (1989) Landslides in France: A risk reduced by recent legal provisions. In: Brabb EE, Harrod BL (eds) landslides: extent and economic significance. AA Balkema, Rotterdam, pp 157–168Google Scholar
  45. Fruneau B, Achache J, Delacourt C (1996) Observations and modelling of the Saint-Etiemme-de-Tinee landslide using SAR interferometry. Tectonophysics 65:81–190Google Scholar
  46. Glade T (1997) The temporal and spatial occurrence of landslide-triggering rainstorms in New Zealand. PhD thesis, Department of Geography, Victoria University of WellingtonGoogle Scholar
  47. Glade T (2004) Vulnerability assessment in landslide risk analysis. Die Erde 134(2):121–138Google Scholar
  48. Glassey P, Barrell B, Forsyth J, Macleod R (2003) The geology of Dunedin, New Zealand, and the management of geological hazards. Quaternary Int 103(1):23–40CrossRefGoogle Scholar
  49. Gonzalez AJ (1989) Metodología y criterios de clasificación para inventario de movimientos, I Simposio suramericano de deslizamientos. Sociedad Colombiana de Geotecnia, Paipa-Colombia, pp 677–698Google Scholar
  50. Gorsevski PV, Gessler PE, Jankowski P (2003) Integrating a fuzzy k-means classification and a Bayesian approach for spatial prediction of landslide hazard. J Geogr Syst 5(3):223–251CrossRefGoogle Scholar
  51. Gritzner ML, Marcus WA, Aspinall R, Custer SG (2001) Assessing landslide potential using GIS, soil wetness modelling and topographic attributes, Payette River, Idaho. Geomorphology 37:149–165CrossRefGoogle Scholar
  52. Guzzetti F (2000) Landslide fatalities and the evaluation of landslide risk in Italy. Eng Geol 58(2):89–107CrossRefGoogle Scholar
  53. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4:213–232CrossRefGoogle Scholar
  54. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31(1–4):181–216CrossRefGoogle Scholar
  55. Hammond C, Hall D, Miller S, Swetik P (1992) Level I stability analysis (LISA) documentation for version 2.0, Gen Tech Rep INT-285, For Serv. US Dep of Agric, Ogden, Utah, 1992Google Scholar
  56. Hardingham AD, Ditchfield CS, Ho KKS, Smallwood ARH (1998) Quantitative risk assessment of landslides—a case history from Hong Kong. In: Li KS, Kay JN, Ho KKS (eds) Slope engineering in Hong Kong. AA Balkema, Hong Kong, pp 145–151Google Scholar
  57. Ho KKS (2004) Keynote paper: recent advances in geotechnology for slope stabilization and landslide mitigation—perspective from Hong Kong. In: Lacerda WA et al. (ed) Landslides, evaluation & stabilization. Proceedings of the 9th International Symposium on Landslides, Rio de Janeiro, vol 2, pp 1507–1560Google Scholar
  58. Honda K, Phillipps GP, Yokoyama GP (2002) Identifying the threat of debris flow to major arterial roads using Landsat ETM+ imagery and GIS modeling—an example from Catanduanes island, Republic of the Philippines. Proceedings of the Asian conference on remote sensing, http://www.gisdevelopment.net/aars/acrs/2002/
  59. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  60. Ibsen M, Brunsden D (1996) The nature, use and problems of historical archives for the temporal occurrence of landslides, with specific reference to the south coast of Britain, Ventnor, Isle of Wight. Geomorphology 15:241–258CrossRefGoogle Scholar
  61. Iverson RM, Logan M, Denlinger RP (2004) Granular avalanches across irregular three-dimensional terrain; 2, experimental tests. J Geophys Res Earth Surf 109(1):16Google Scholar
  62. Iwahashi J, Watanabe S, Furuya T (2001) Landform analysis of slope movements using DEM in Higashikubiki area, Japan. Comput Geosci 27(7):851–865CrossRefGoogle Scholar
  63. Jibson RW, Harp EL, Michael JA (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58(3–4):271–289CrossRefGoogle Scholar
  64. Juang CH, Lee DH, Sheu C (1992) Mapping slope failure potential using fuzzy sets. J Geotech Eng ASCE 118(3):475–493CrossRefGoogle Scholar
  65. Kimura H, Yamaguchi Y (2000) Detection of landslide areas using satellite radar interferometry. Photogramm Eng Remote Sens 66(3):337–344Google Scholar
  66. Lateltin O (1997) Berücksichtigung der Massenbewegungsgefahren bei raumwirksamen Tätigkeiten. Empfehlungen 1997. Swiss Federal Office for Water and Geology (FOWG). http://www.bwg.admin.ch/themen/natur/e/index.htm
  67. Lee EM, Jones DKC (2004) Landslide risk assessment. Thomas Telford, London, pp 454Google Scholar
  68. Lee S, Choi J, Min K (2002) Landslide susceptibility analysis and verification using the Bayesian probability model environmental. Geology 43:120–131Google Scholar
  69. Lee S, Ryu J-H, Min K, Won J-S (2003) Landslide susceptibility analysis using GIS and artificial neural network. Earth Surf Process Landforms 28(12):1361–1376CrossRefGoogle Scholar
  70. Leroi E (1996) Landslide hazard—risk maps at different scales: objectives, tools and development. In: Senneset K (eds) Landslides—Glissements de Terrain, 7th International symposium on landslides. Balkema, Trondheim, Norway, pp 35–51Google Scholar
  71. Liu JG, Mason PJ, Clerici M, Chen S, Davis A, Miao F, Deng H, Liang L (2004) Landslide hazard assessment in the Three Gorges area of the Yangtze river using ASTER imagery: Zigui-Badong, Geomorphology (in press), Corrected proof, available online 2 February 2004Google Scholar
  72. Lu P, Rosenbaum MS (2003) Artificial Neural Networks and Grey Systems for the Prediction of Slope Stability. Nat Hazards 30(3):383–398CrossRefGoogle Scholar
  73. Luzi L, Pergalani F, Terlien MTJ (2000) Slope vulnerability to earthquakes at subregional scale, using probabilistic techniques and geographic information systems. Eng Geol 58:313–336CrossRefGoogle Scholar
  74. MacMillan RA, Jones RK, McNabb DH (2004) Defining a hierarchy of spatial entities for environmental analysis and modelling using digital elevation models (DEMs), computers. Environ Urban Syst 28(3):175–200CrossRefGoogle Scholar
  75. Michael-Leiba M, Baynes F, Scott G, Granger K (2003) Regional landslide risk to the Cairns community. Nat Hazards 30(2):233–249CrossRefGoogle Scholar
  76. Miles SB, Ho CL (1999) Rigorous landslide hazard zonation using Newmark’s method and stochastic ground motion simulation. Soil Dyn Earthquake Eng 18(4):305–323CrossRefGoogle Scholar
  77. Miller DJ, Sias J (1998) Deciphering large landslides: linking hydrological, groundwater and slope stability models through GIS. Hydrol Process 12(6):923–941CrossRefGoogle Scholar
  78. Möller R, Glade T, Dikau R (2001) Application of soil mechanical response units (SMRU) in regional landslide hazard assessment. Zeitschrift fur Geomorphologie, Supplementband (125):139–151Google Scholar
  79. Montgomery DR, Sullivan K, Greenberg HM (1998) Regional test of a model for shallow landsliding. Hydrol Process 12(6):943–955CrossRefGoogle Scholar
  80. Montgomery DR, Schmidt KM, Greenberg HM, Dietrich WE (2000) Forest clearing and regional landsliding. Geology 28(4):311–314CrossRefGoogle Scholar
  81. Moon V, Blackstock H (2003) A methodology for assessing landslide hazard using deterministic stability models. Nat Hazards (in press), Digitally available , pp 1–23Google Scholar
  82. Morgenstern NR (1997) Toward landslide risk assessment in practice. In: Cruden D, Fell R (eds) Landslide risk assessment. AA Balkema, Rotterdam, pp 15–23Google Scholar
  83. Nagarajan R, Mukherjee A, Roy A, Khire MV (1998) Temporal remote sensing data and GIS application in landslide hazard zonation of part of Western Ghat, India. Int J Remote Sens 19(4):573–585CrossRefGoogle Scholar
  84. Ng KC, Fung KS, Shum WL (2004) Applying mobile GIS technology to geotechnical fieldwork. Proceedings of the seminar on recent advances in geotechnical engineering, geotechnical division, Hong Kong Institute of Engineers (in press)Google Scholar
  85. Norheim RA, Queija VR, Haugerud RA (2002) Comparison of LIDAR and INSAR DEMs with dense ground control: Proceedings of the Environmental Systems Research Institute 2002 User Conference, http://gis.esri.com/library/userconf/proc02/pap0442/p0442.htm.
  86. Ohlmacher GC, Davis JC (2003) Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng Geol 69(3–4):331–343CrossRefGoogle Scholar
  87. Petley D, Crick WO, Hart AB (2002) The use of satellite imagery in landslide studies in high mountain areas. Proceedings of the Asian conference on remote sensing, 2002. http://www.gisdevelopment.net/aars/acrs/2002/hdm/48.pdf
  88. Rabus B, Eineder M, Roth A, BamlerR, (2003) The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm Remote Sens 57(4):241–262CrossRefGoogle Scholar
  89. RADIUS (1999) Risk assessment tools for diagnosis of urban areas against seismic disasters, launched by IDNDR, United Nations [Online] http://geohaz.org/radius/ (verified: 10/12/2004)
  90. Randall WJ, Edwin LH, John AM (2000) A method for producing digital probabilistic seismic landslide hazard maps. Eng Geol 58:271–289CrossRefGoogle Scholar
  91. Refice A, Capolongo D (2002) Probabilistic modelling of uncertainties in earthquake-induced landslide hazard assessment. Comput Geosci 28(6):735–749CrossRefGoogle Scholar
  92. Remondo J, Bonachea J, Cendrero A (2004) Probabilistic landslide hazard and risk mapping on the basis of occurrence and damages in the recent past. In: Lacerda WA et al. (ed) Landslides, evaluation & stabilization. Proceedings of the 9th international symposium on landslides, Rio de Janeiro, vol 1, pp 125–130Google Scholar
  93. Rickenmann D (2000) Debris flows and torrent floods: methods for hazard assessment. In: Proceedings of the international conference on avalanches, landslides, rock falls, debris flows (CALAR), ViennaGoogle Scholar
  94. Rizo V, Tesauro M (2000) SAR interferometry and field data of Randazzo landslide (Eastern Sicily, Italy). Phys Chem Earth B Hydrol Oceans Atmos 25(9):771–780CrossRefGoogle Scholar
  95. Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys Res Lett 26(11):1629–1632CrossRefGoogle Scholar
  96. Rowbotham DN, Dudycha D (1998) GIS modelling of slope stability in Phewa Tal watershed, Nepal. Geomorphology 26(1–3):151–170CrossRefGoogle Scholar
  97. Rowlands KA, Jones LD, Whitworth M (2003) Landslide laser scanning: a new look at an old problem. Quart J Eng Geol Hydrogeol 36(2):155–157CrossRefGoogle Scholar
  98. Santacana N, De Paz A, Baeza B, Corominas J, Marturi J (2003) A GIS-based multivariate statistical analysis for shallow landslide susceptibility mapping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Nat Hazards 30(3):281–295CrossRefGoogle Scholar
  99. Savage SB, Hutter K (1991) The dynamics of avalanches and granular material from initiation to runout. Part I: analysis. Acta Mechanica 86:201–223CrossRefGoogle Scholar
  100. Savage WZ, Godt JW, Baum RL (2003) A model for spatially and temporally distributed shallow landslide initiation by rainfall infiltration. In: Rickenmann D, Chen C-L (eds) Proceedings of the third international conference on debris flow hazards mitigation: mechanics, prediction, and assessment, Davos, Millpress, Rotterdam, pp 179–187Google Scholar
  101. Soeters R, Van Westen CJ (1996) Slope instability recognition, analysis and zonation. In: Turner AK, Schuster RL (eds) Landslides, investigation and mitigation. Transportation Research Board, National Research Council, Special Report 247, National Academy Press, Washington, USA, pp 129–177Google Scholar
  102. Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68(1–2):53–66CrossRefGoogle Scholar
  103. Suzen ML, Doyuran V (2003) A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol. DOI 10.1007/s00254-003-0917-8Google Scholar
  104. Terlien MTJ (1996) Modelling spatial and temporal variations in rainfall-triggered landslides. PhD thesis, ITC Publ. no. 32, p 254Google Scholar
  105. Terlien MTJ, Van Asch TWJ, Van Westen CJ (1995) Deterministic modelling in GIS-based landslide hazard assessment. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer Academic Publishing, The Netherlands, pp 57–77Google Scholar
  106. Van Asch TWJ, Kuipers B, Van der Zanden DJ (1993) An information system for large scale quantitative hazard analyses of landslides. Z fur Geomorphologie Suppl-Bd 87:133–140Google Scholar
  107. Van Asch TWJ, Hendricks MR, Hessel R, Rappange FE (1996) Hydrological triggering conditions of landslides in varved clays in the French Alps. Eng Geol 42:239–251CrossRefGoogle Scholar
  108. Van Asch TWJ, Malet J-P, Remaître A, Maquaire O (2004) Numerical modelling of the run-out of a muddy debris flow. The effect of rheology on velocity and deposit thickness along the run-out track. In: Lacerda A, Ehrlich M, Fontoura SAB, Sayão A (eds) Proceedings of the 9th international symposium on landslides, Rio de Janeiro, Balkema, Leiden, vol 2, 1433–1439Google Scholar
  109. Van Beek R (2002) Assessment of the influence of changes in climate and land use on landslide activity in a Mediterranean environment. Netherlands Geographical Studies no. 294, KNAG, Faculty of Geosciences, Utrecht University, p 366Google Scholar
  110. Van Beek R, Van Asch TWJ (1999) A combined conceptual model for the effects of fissure-induced infiltration on slope stability. In: Hergarten S, Neugebauer HJ (eds) Process modelling and landform evolution. Springer, Berlin Heidelberg New York, pp 147–167CrossRefGoogle Scholar
  111. Van Beek LPH, Van Asch TWJ (2003) Regional assessment of the effects of land-use change on landslide hazard by means of physically based modelling. Nat Hazards 31:289–304CrossRefGoogle Scholar
  112. Van Westen CJ (1993) Application of geographic information systems to landslide hazard zonation. PhD dissertation, Technical University Delft. ITC-publication number 15, ITC, p 245Google Scholar
  113. Van Westen CJ, Soeters R, Sijmons K (2000) Digital Geomorphological landslide hazard mapping of the Alpago area, Italy. Int Appl Earth Observ Geoinf 2(1):51–59CrossRefGoogle Scholar
  114. Van Westen CJ, Rengers N, Soeters R (2003) Use of geomorphological information in indirect landslide susceptibility assessment. Nat Hazards 30(3):399–419CrossRefGoogle Scholar
  115. Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. United Nations International, ParisGoogle Scholar
  116. Wong HN (2001) Recent advances in slope engineering in Hong Kong. (invited paper) In: Proceedings of the 1st Southeast Asian geotechnical conference, Hong Kong, vol 1, pp 641–659Google Scholar
  117. Wong HN, Ho KKS, Chan YC (1997) Assessment of consequence of landslides. In: Cruden R, Fell R (eds) Landslide risk assessment. AA Balkema, Rotterdam, pp 111–149Google Scholar
  118. Wu TH, Tang WH, Einstein HE (1996) Landslide hazard and risk assessment. In: Turner and AK, Schuster RL (eds) Landslides. Investigation and mitigation. Transportation Research Board Special Report. National Academy Press, Washington, pp 106–118Google Scholar
  119. Yamaguchi Y, Tanaka S, Odajima T, Kamai T, Tsuchida S (2003) Detection of a landslide movement as geometric misregistration in image matching of SPOT HRV data of two different dates. Int J Remote Sens 24(18):3523–3534CrossRefGoogle Scholar
  120. Zêzere JL, Rodrigues ML, Reis E, Garcia R, Oliveira S, Vieira G, Ferreira AB (2004) Spatial and temporal data management for the probabilistic landslide hazard assessment considering landslide typology. In: Lacerda WA et al. (ed) Landslides, evaluation & stabilization. Proceedings of the 9th international symposium on Landslides, Rio de Janeiro, vol 1, pp 117–125Google Scholar
  121. Zhou G, Esaki T, Mitani Y, Xie M, Mori J (2003) Spatial probabilistic modelling of slope failure using an integrated GIS Monte Carlo simulation approach. Eng Geol 68(3–4):373–386CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C.J. van Westen
    • 1
  • T.W.J. van Asch
    • 2
  • R. Soeters
    • 1
  1. 1.International Institute for Geo-Information Science and Earth Observation (ITC)EnschedeThe Netherlands
  2. 2.Faculty of GeosciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations