Advertisement

Complex landslide in the Rječina valley (Croatia): origin and sliding mechanism

  • Čedomir Benac
  • Željko Arbanas
  • Vladimir Jurak
  • Maja Oštrić
  • Nevenka Ožanić
Original Paper

Abstract

This paper discusses the development of the Grohovo landslide on the north-eastern slope of the Rječina valley, the largest active landslide along the Croatian part of the Adriatic Sea coast. This complex retrogressive landslide was reactivated in December 1996. Thirteen separate slide bodies have been identified. The slide surface is considered to be on the upper flysch bedrock. Monitoring indicated that the magnitude of displacements was very different in time and space. The maximum movements were recorded on the upper part of the slope. The limestone mega-block and separated rocky blocks on top of the slope have also moved, which is not a typical phenomenon of the flysch slopes in the area of Rijeka.

Keywords

Landslide Rockfall Mass movements Flysch Monitoring 

Résumé

L’article décrit l’évolution du glissement de Grohovo, sur les pentes nord-est de la vallée de Rjecina. Il s’agit du plus important glissement actif le long de la partie croate de la côte adriatique. Ce glissement complexe, en évolution régressive, a été réactivé en décembre 1996. Treize unités disjointes en rupture ont été identifiées. La surface de glissement est supposée se situer au contact du flysch supérieur constituant le substratum. L’instrumentation mise en place a montré la diversité dans le temps et l’espace des valeurs de déplacements. Les mouvements les plus importants ont été enregistrés en partie supérieure de la pente. Une importante masse rocheuse calcaire et des blocs isolés au sommet de la pente se sont aussi déplacés, ce qui ne correspond pas à des phénomènes typiques sur les pentes de flysch de la région de Rjeka.

Motsclés

Glissement de terrain Chute de bloc Masse glissée Flysch Instrumentation 

References

  1. Anderson H, Jackson J (1987) Active tectonics of the Adriatic region. Geophysics Journal 91:937–983CrossRefGoogle Scholar
  2. Antoine P, Giraud A (1995) Typologie des Mouvements de Versants dans un Contexte Operationnel. Bulletin IAEG 51:57–62Google Scholar
  3. Benac Č, Arbanas Ž, Jardas B, Kasapović S, Jurak V (1999) Complex landslide in the Rječina river valley. Rudarsko-geološko-naftni zbornik 11:81–90 (in Croatian)Google Scholar
  4. Benac Č, Arbanas Ž, Jurak V, Kasapović S, Dujmić D, Jardas B, Pavletić Lj (2000) Landslide Grohovo-complex landsliding in the valley of the Rječina river. In: Proceedings of 2nd Croatian Geological Congress. Cavtat, Croatia, pp 517–523 (in Croatian)Google Scholar
  5. Benac Č, Arbanas Ž, Jardas B, Jurak V, Kovačević SM (2002) Complex landslide in the Rječina river valley (Croatia): results and monitoring. In: Ribar J, Stemberk J, Wagner P (eds) Landslides, Proceedings of the 1st European Conference on Landslides, Prague, Czech Republic, pp 487–492. A.A. Balkema Publishers, Lisse-Abingdon-Exton-TokyoGoogle Scholar
  6. Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5(1):7–17Google Scholar
  7. Blašković I (1997) The helicoidal fault system of Vinodol (Croatia) and their genesis. Geologica Croatica 50(1):49–56Google Scholar
  8. Blašković I (1999) Tectonics of part of the Vinodol valley within the model of the continental crust subduction. Geologia Croatica 52(2):153–189Google Scholar
  9. Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapiere” landslide evolution analysed from ortho-rectified aerial photographs. Engineering Geology 68(1–2):123–139CrossRefGoogle Scholar
  10. Chowdhury RN, Flentje P (2003) Role of slope reliability analysis in landslide risk menagement. Bull Eng Geol Environ 62(1):41–46Google Scholar
  11. Coe JA, Ellis WL, Godt JW, Savage WZ, Savage JE, Michael JA, Kibler JD, Powers PS, Lidke DJ, Debray S (2003) Seasonal movement of the Slumgullion landslide determined from global positioning system surveys and field instrumentation, July 1998–March 2002. Eng Geol 68(1–2):67–101CrossRefGoogle Scholar
  12. Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motions with the permanent scatterers technique. Eng Geol 68(1–2):3–14CrossRefGoogle Scholar
  13. Crozier MJ (1984) Field assessment of slope instability. In: Brunsen D, Prior DB (eds) Slope instability. John Wiley & Sons, New York, pp 103–142Google Scholar
  14. Del Ben A, Finetti I, Rebez A, Slejko D (1991) Seismicity and seismotectonics at the Alps - Dinarides contact. Bollettino di Geofisica Teorica ad Applicata XXXIII(130–131):155–176Google Scholar
  15. GEOSLOPE (1998) User’s guide slope/W for slope stability analysis, CalgaryGoogle Scholar
  16. Herak MI (1986) A new concept of geotectonics of the Dinarides. Acta Geologica 16(1):1–42Google Scholar
  17. Herak MA, Herak D, Markušić S (1996) Revision of the earthquake catalogue and seismicity of Croatia, 1902–1992. Terra Nova 8:86–94CrossRefGoogle Scholar
  18. IAEG (1990) Suggested nomenclature for landslides. Bulletin IAEG 41:13–16Google Scholar
  19. Keaton JR, Degraff JV (1996) Surface observation and geologic mapping. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation. Special report 247. National Academy Press, Washington, DC, p 195Google Scholar
  20. Moser M (2002) Geotechnical aspects of landslides in the Alps. In: Ribar J, Stemberk J, Wagner P (eds) Landslides Proceedings of the 1st European Conference on Landslides, Prague, Czech Republic. A.A. Balkema Publishers, Lisse-Abingdon-Exton-Tokyo, pp 23–43Google Scholar
  21. Popescu ME (1994) A suggested method for reporting landslide causes. Bulletin IAEG 50:71–74Google Scholar
  22. Poisel R, Eppensteiner W (1988) Gang und Gehwerk einer Massenbewegung. Teil 1: Geomechanik des Systems Hart auf Weich. Felsbau 6(4):189–194Google Scholar
  23. Prelogović E, Kuk V, Jamičić D, Aljinović B, Marić K (1995) Seismotectonic activity of the Kvarner area. In: Proceedings of 1st Croatian Geological Congress Vol 2:487–490, Institute of Geology, Zagreb. (in Croatian)Google Scholar
  24. Skempton AW, Hutchinson JN (1969) Stability of natural slopes and embankment foundations, State of the art report: 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp 291–340Google Scholar
  25. Spencer E (1967) A method of analysis of the stability of embankments assuming parallel interslice forces. Geotechnique 17(1):11–26CrossRefGoogle Scholar
  26. Varnes DJ (1978) Slope movements, types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and controls, report. National Academy of Science, Washington DC, 176:11–33Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Čedomir Benac
    • 1
  • Željko Arbanas
    • 2
  • Vladimir Jurak
    • 3
  • Maja Oštrić
    • 4
  • Nevenka Ožanić
    • 5
  1. 1.Faculty of Civil Engineering, Department of Hydrotechnics and GeotechnicsUniversity of RijekaRijekaCroatia
  2. 2.Department of RijekaCivil Engineering Institut of CroatiaRijekaCroatia
  3. 3.Department of Geology and Geological EngineeringUniversity of Zagreb, Faculty of Mining, Geology and Petroleum EngineeringZagrebCroatia
  4. 4.Department of RijekaCroatian WatersRijekaCroatia
  5. 5.Department of Hydrotechnics and GeotechnicsUniversity of Rijeka, Faculty of Civil EngineeringRijekaCroatia

Personalised recommendations