Limestone and dolomite powder as binders for wood ash agglomeration

Article

Abstract

Limestone and dolomite powder were tested as binders during wood ash agglomeration on an industrial and a laboratory scale. Two agglomeration methods are compared. Dolomite from Estonia is commonly used as a binder/additive during automatic production of agglomerated wood ash at the central heating plant of Kalmar, Sweden. Swedish limestones from Öland and Ignaberga as well as Swedish dolomite from Glanshammar were used as binders in the production of test agglomerates of wood ash. The chemical and mineralogical composition of the binders as well as of the resulting granules and pellets is presented. The structural, chemical and leaching properties of the hardened ash/binder agglomerates are discussed in relation to their possible environmental impact on forest soil. The environmental acceptance of recycling of agglomerated ashes to forest soils is also discussed in relation to the new recommendations.

Keywords

Agglomeration Wood ash Ash recycling Acidification Hardening 

Résumé

De la poudre de calcaire et de dolomite a été testée comme liant pour agglomérer de la cendre de bois à l’échelle du laboratoire et à une échelle industrielle. Deux méthodes d’agglomération sont comparées. De la dolomite d’Estonie est communément utilisée comme additif et liant lors de la production industrielle de cendres de bois agglomérées à la centrale thermique de Kalmar en Suède. Par ailleurs, les calcaires suédois de Öland et Ignaberga ainsi que les dolomies suédoises de Glanshammar ont été utilisés comme liants tests dans la production de cendres de bois agglomérées. Les compositions chimique et minéralogique des liants ainsi que des granules et pellets produits sont présentées. Les propriétés structurales, chimiques et de drainage des cendres de bois agglomérées et affermies par le liant sont analysées, par rapport à un impact environnemental possible sur des sols forestiers. Cet impact est discuté par référence aux nouvelles recommandations environnementales.

Mots clés

Agglomération Cendres de bois Recyclage de cendres Acidification Affermissement 

References

  1. Abbas Z (2002) Leaching behaviour of MSW combustion ashes and modelling of solid–liquid interface. Göteborg UniversityGoogle Scholar
  2. Alba N, Vázquez E, Gasso S, Baldasano JM (2001) Stabilization/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Manage 21:313–323CrossRefGoogle Scholar
  3. Baxter LL, Miles TR, Miles Jr TR, Jenkins BM, Milne T, Dayton D, Bryers RW, Oden LL (1998) The behavior of inorganic material in biomass-fired power boilers: field and laboratory experiences. Fuel Process Technol 54:47–78CrossRefGoogle Scholar
  4. Baykal G, Döven AG (2000) Utilization of fly ash by pelletization process; theory, application areas and research results. Resour Conserv Recycling 30:59–77CrossRefGoogle Scholar
  5. Bertelsen (1998) Importance of ash recirculation for economy, ecology and for meeting the Danish renewable energy policy goals. In: Ingwald Obernberger (ed) Ashes and particulate emissions from biomass combustion. Formation, characterisation, evaluation, treatment, 1st edn. dbv-Verlag für die Technische Universität Graz, AustriaGoogle Scholar
  6. Bjurström H (1999) A comparison between several methods to treat bioash before recycling. Värmeforsk, Miljö- och förbränningsteknik 669, Stockholm (summary in English)Google Scholar
  7. Bjurström H, Sjöblom R (1997) Treatment of biofuel ashes for forest recycling (in Swedish). Värmeforsk 605Google Scholar
  8. Börjesson P (1992) The resolution of granulated wood ash in forest soils (summary in English). R, D & D-Report 17, VattenfallGoogle Scholar
  9. Eriksson HM, Nilsson T, Nordin A (1998) Early effects of lime and hardened and non-hardened ashes on pH and electrical conductivity of the forest floor, and relations to some ash and lime qualities. Scand J For Res Suppl 2:56–66Google Scholar
  10. Holmberg SL (2000) Chemical and mineralogical characterisation of granulated wood ash. Earth Sciences Centre, Göteborg University, A 62Google Scholar
  11. Holzner H (1998) Ecological and economic evaluation of biomass ash utilization—the Austrian approach. In Obernberger I (ed) Ashes and particulate emissions from biomass combustion. Formation, characterisation, evaluation, treatment. dbv-Verlag für die Technische Universität Graz, AustriaGoogle Scholar
  12. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants. CRC Press, Boca Raton, Fla.Google Scholar
  13. Korpilahti A, Moilanen M, Finér L (1998) Biomass ash utilization in Finland. In Obernberger I (ed) Ashes and particulate emissions from biomass combustion. Formation, characterisation, evaluation, treatment. dbv-Verlag für die Technische Universität Graz, AustriaGoogle Scholar
  14. Larsson P-E, Westling O (1999) Leaching of wood ash—a laboratory study. IVL Report B 1325 (in Swedish, summary in English)Google Scholar
  15. Levula T, Saarsalmi A, Rantavaara A (2000) Effects of ash fertilization and prescribed burning on macronutrient, heavy metal, sulphur and 137Cs concentrations in lingonberries (Vaccinium vitis-idaea). For Ecol Manage 126:269–279CrossRefGoogle Scholar
  16. Lindqvist H (1999) Granulated wood ash, chemical and physical properties (in Swedish, summary in English). Examination work M 10, University of Kalmar, SwedenGoogle Scholar
  17. Lindahl M, Claesson T (1996) Ash recycling. Granules made of wood ash, ETEC-dolomite and water (in Swedish). University of Kalmar and Kalmar Energi & Miljö, Kalmar, SwedenGoogle Scholar
  18. Lundborg A (1998) Ecological and economic evaluation of biomass ash utilization—the Swedish approach. In Obernberger I (ed) Ashes and particulate emissions from biomass combustion. Formation, characterisation, evaluation, treatment. dbv-Verlag für die Technische Universität Graz, AustriaGoogle Scholar
  19. Medici F, Piga L, Rinaldi G (2000) Behaviour of polyaminophenolic additives in the granulation of lime and fly-ash. Waste Manage 20:491–498CrossRefGoogle Scholar
  20. National Board of Forestry (2002) Recommendations for the extraction of forest fuel and compensation fertilising. (Skogsstyrelsen Meddelande 3). JV, Jönköping, SwedenGoogle Scholar
  21. Obernberger I, Dahl J, Arich A (1996) Biomass fuel and ash analysis. European Commission, Science, Research, DevelopmentGoogle Scholar
  22. Raukas A, Teedumäe A (eds) (1997) Geology and mineral resources of Estonia. Estonian Academy Publishers, TallinnGoogle Scholar
  23. Steenari, B-M, Lindqvist, O (1997) Stabilisation of biofuel ashes for recycling to forest soil. Biomass Bioenergy 13(1–2):39–50Google Scholar
  24. Steenari B-M, Marsic N, Karlsson L-G, Tomsic A, Lindqvist O (1998) Long-term leaching of stabilized wood ash. Scand J For Res Suppl 2:3-16Google Scholar
  25. Ström E (1994) The ash recovery programme. Sydkraft, Nutek, Vattenfall R:39Google Scholar
  26. Svantesson T, Olsson G (2002) Wood ash agglomeration—have we reached an automatic solution yet? Technical Report—Industrial Automation. Department of Industrial Electrical Engineering and Automation, Lund UniversityGoogle Scholar
  27. Teedumäe A, Kiipli T, Kallaste T (1999) Dolomites of the Muhu formation (Silurian) in mainland Estonia: aspects of dolomitization, properties, and prospects of utilization. Proc Estonian Acad Sci Geol 48(4):213–227Google Scholar
  28. Troedsson T, Nykvist N (1973) Marklära och markvård. Almkvist & Wiksell Läromedel AB, Stockholm, pp 87–88Google Scholar
  29. Windelhed K (1998) Roll pelleting. Evaluation of a new technique for producing pellets from bioash suitable for forest nutrient (in Swedish, summary in English). Värmeforsk Anläggningsteknik 695Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Department of Biology and Environmental ScienceUniversity of KalmarKalmarSweden

Personalised recommendations