Large-scale lateral spreading and related mass movements in the Northern Calcareous Alps

  • J. RohnEmail author
  • M. Resch
  • H. Schneider
  • T. M. Fernandez-Steeger
  • K. Czurda


Lateral spreading is an important geotechnical phenomenon in the Hallstatt zones of the Northern Calcareous Alps where rigid limestones overlie marls and salt clays. Following the last glaciation, mass movements have developed with a general spreading of limestone blocks resulting in a complicated “jigsaw puzzle” of rock. Two typical examples from Mt. Sandling and Mt. Raschberg in the Northern Calcareous Alps of Austria are discussed.


Lateral spreading Calcareous Alps Mt. Sandling Mt. Raschberg Hallstatt zones Undrained loading 


Les déplacements de masses rocheuses glissées représentent un type de mouvement de versant important dans la région d’Hallstatt, dans les Alpes calcaires du Nord où des calcaires massifs reposent sur des marnes et des argiles. A la suite de la dernière glaciation, des mouvements de versant se sont réalisés, conduisant à des déplacements importants de masses calcaires et à la formation de puzzles rocheux complexes. Deux exemples typiques au Mt. Sandling et au Mt. Raschberg dans les Alpes calcaires du Nord, en Autriche, sont analysés.

Mots clés

Masses rocheuses glissées Alpes calcaires Mt. Sandling Mt. Raschberg Région d’Hallstatt 


  1. Bammer O (1984) Massenbewegungen im Raum von Bad Goisern/Oberösterreich. In: Proc Int Symp Interpraevent, VillachGoogle Scholar
  2. Buma J, van Asch T (1996) Soil (debris) spreading. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition: identification, movement and causes. Wiley, Chichester, pp 137–148Google Scholar
  3. Cancelli A, Pellegrini M (1987) Deep-seated gravitational deformations in the northern Apennines, Italy. In: Proc 5th Int Conf and Field Worksh on Landslides, Australia and New Zealand, pp 1–8Google Scholar
  4. Cancelli A, Chinaglia N, Mazzoccola D (1993) Lateral spreading in rock formations: mechanism, analysis, hazard assessment and control measures. In: Chowdhury RN, Sivakumar SM (eds) Environmental management, geo-water and engineering aspects. AA Balkema, RotterdamGoogle Scholar
  5. Hutchinson JN (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard Ch (ed) Landslides. Proc 5th Int Symp on Landslides. AA Balkema, Rotterdam, pp 3–35Google Scholar
  6. Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflows and other mass movements. Geotechnique 21(4):353–358Google Scholar
  7. Pasuto A, Soldati M (1996) Rock spreading. In: Dikau R, Brunsden D, Schrott L, Ibsen M-L (eds) Landslide recognition: identification, movement and causes. Wiley, Chichester, pp 122–136Google Scholar
  8. Resch M (1997) Geological and engineering geological studies of the mass movements at Mt. Raschberg/Bad Goisern (in German). Diploma Thesis, University of KarlsruheGoogle Scholar
  9. Schneider H (1998) Geological and engineering geological investigation of mass movements at Mt. Sandling (in German). Diploma Thesis, University of KarlsruheGoogle Scholar
  10. Schweigl J, Neubauer F (1997) Structural evolution of the central Northern Calcareous Alps: significance for the Jurassic to Tertiary geodynamics in the Alps. Eclogae Geol Helv 90:303–323Google Scholar
  11. Van Husen D (1977) Zur Fazies und Stratigraphie jungpleistozäner Ablagerungen im Trauntal. Jahrb Geol Bundesanst Austria 120:23–45Google Scholar
  12. Varnes DJ (1978) Slope movements: type and processes. In: Eckel EB (ed) Landslides analysis and control. Transport Research Board, Spec Rep 176. National Academy of Sciences, Washington, DC, pp 11–33Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • J. Rohn
    • 1
    Email author
  • M. Resch
    • 1
  • H. Schneider
    • 1
  • T. M. Fernandez-Steeger
    • 1
  • K. Czurda
    • 1
  1. 1.Department for Applied GeologyUniversity Karlsruhe (TH)KarlsruheGermany

Personalised recommendations