Advertisement

Molecules and Cells

, Volume 35, Issue 4, pp 320–326 | Cite as

RNA interference-mediated simultaneous silencing of four genes using cross-shaped RNA

  • Tae Yeon Lee
  • Chan Il Chang
  • Dooyoung Lee
  • Sun Woo Hong
  • Chanseok Shin
  • Chiang J. Li
  • Soyoun Kim
  • Dirk Haussecker
  • Dong-ki LeeEmail author
Research Article

Abstract

The structural flexibility of RNA interference (RNAi)-triggering nucleic acids suggests that the design of unconventional RNAi trigger structures with novel features is possible. Here, we report a cross-shaped RNA duplex structure, termed quadruple interfering RNA (qiRNA), with multiple target gene silencing activity. qiRNA triggers the simultaneous down-regulation of four cellular target genes via an RNAi mechanism. In addition, qiRNA shows enhanced intracellular delivery and target gene silencing over conventional siRNA when complexed with jetPEI, a linear polyethyleneimine (PEI). We also show that the long antisense strand of qiRNA is incorporated intact into an RNA-induced silencing complex (RISC). This novel RNA scaffold further expands the repertoire of RNAi-triggering molecular structures and could be used in the development of therapeutics for various diseases including viral infections and cancer.

Keywords

polyethyleneimine (PEI) quadruple interfering RNA (qiRNA) RNA interference small interfering RNA (siRNA) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aigner, A. (2006). Gene silencing through RNA interference (RNAi)in vivo: strategies based on the direct application of siRNAs. J. Biotechnol. 124, 12–25.PubMedCrossRefGoogle Scholar
  2. Boden, D., Pusch, O., Lee, F., Tucker, L., and Ramratnam, B. (2003). Human immunodeficiency virus type 1 escape from RNA interference. J. Virol. 77, 11531–11535.PubMedCrossRefGoogle Scholar
  3. Chang, C.I., Hong, S.W., Kim, S., and Lee, D.K. (2007). A structureactivity relationship study of siRNAs with structural variations. Biochem. Biophys. Res. Commun. 359, 997–1003.PubMedCrossRefGoogle Scholar
  4. Chang, C.I., Andrade, H., Dua, P., Kim, S., Li, C.J., and Lee, D.K. (2011a). Structural diversity repertoire of gene silencing siRNAs. Nucleic. Acid Ther. 21, 125–131.PubMedGoogle Scholar
  5. Chang, C.I., Lee, T.Y., Dua, P., Kim, S., Li, C.J., and Lee, D.K. (2011b). Long dsRNA-mediated RNA interference and immunostimulation: long interfering RNA (liRNA) as a potent anticancer therapeutics. Nucleic. Acid Ther. 21, 149–155.PubMedGoogle Scholar
  6. Chang, C.I., Lee, T.Y., Yoo, J.W., Shin, D., Kim, M., Kim, S., and Lee, D.K. (2012a). Branched, tripartite-interfering RNAs silence multiple target genes with long guide strands. Nucleic. Acid Ther. 22, 30–39.PubMedGoogle Scholar
  7. Chang, C.I., Lee, T.Y., Kim, S., Sun, X., Hong, S.W., Yoo, J.W., Dua, P., Kang, H.S., Kim, S., Lee, D., et al. (2012b). Enhanced intracellular delivery and multi-target gene silencing triggered by tripodal RNA structures. J. Gene Med. 14, 138–146.PubMedCrossRefGoogle Scholar
  8. Cheloufi, S., Dos Santos, C.O., Chong, M.M., and Hannon, G.J. (2010). A Dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589.PubMedCrossRefGoogle Scholar
  9. Cifuentes, D., Xue, H., Taylor, D.W., Patnode, H., Mishima, Y., Cheloufi, S., Ma, E., Mane, S., Hannon, G.J., Lawson, N.D., et al. (2010). A novel miRNA processing pathway independent of Dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698.PubMedCrossRefGoogle Scholar
  10. Czech, B., and Hannon, G.J. (2011). Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31.PubMedCrossRefGoogle Scholar
  11. Diederichs, S., and Haber, D.A. (2007). Dual role for Argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108.PubMedCrossRefGoogle Scholar
  12. Elbashir, S.M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498.PubMedCrossRefGoogle Scholar
  13. Elkayam, E., Kuhn, C.D., Tocilj, A., Haase, A.D., Greene, E.M., Hannon, G.J., and Joshua-Tor, L. (2012). The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110.PubMedCrossRefGoogle Scholar
  14. Hannon, G.J. (2002). RNA interference. Nature 418, 244–251.PubMedCrossRefGoogle Scholar
  15. Jinek, M., and Doudna, J.A. (2009). A three-dimensional view of the molecular machinery of RNA interference. Nature 457, 405–412.PubMedCrossRefGoogle Scholar
  16. Lares, M.R., Rossi, J.J., and Ouellet, D.L. (2010). RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol. 28, 570–579.PubMedCrossRefGoogle Scholar
  17. Lee, S.Y., Huh, M.S., Lee, S.K., Lee, S.J., Chung, H.J., Park, J.H., Oh, Y.K., Choi, K.W., Kim, K.M., and Kwon, I.C. (2010). Stability and cellular uptake of polymerized siRNA (poly-siRNA)/polyethylenimine (PEI) complexes for efficient gene silencing. J. Control. Release 141, 339–346.PubMedCrossRefGoogle Scholar
  18. Mok, H., Lee, S.H., Park, J.W., and Park, T.G. (2010). Multimeric small interfering ribonucleic acid for highly efficient sequencespecific gene silencing. Nat. Mater. 9, 272–278.PubMedGoogle Scholar
  19. Schirle, N.T., and MacRae, I.J. (2012). The crystal structure of human Argonaute2. Science 336, 1037–1040.PubMedCrossRefGoogle Scholar
  20. Tan, G.S., Garchow, B.G., Liu, X., Yeung, J., Morris, J.P. 4th, Cuellar, T.L., McManus, M.T., and Kiriakidou, M. (2009). Expanded RNA-binding activities of mammalian Argonaute2. Nucleic Acids Res. 37, 7533–7545.PubMedCrossRefGoogle Scholar
  21. Tan, G.S., Chiu, C., Garchow, B.G., Metzler, D., Diamond, S.L., and Kiriakidou, M. (2012). Small molecule inhibition of RISC loading. ACS Chem. Biol. 7, 403–410.PubMedCrossRefGoogle Scholar
  22. Urban-Klein, B., Werth, S., Abuharbeid, S., Czubayko, F., and Aigner, A. (2005). RNAi-mediated gene-targeting through systemic application of polyethylenimine (PEI)-complexed siRNA in vivo. Gene Ther. 12, 461–466.PubMedCrossRefGoogle Scholar
  23. Yang, J.S., Maurin, T., Robine, N., Rasmussen, K.D., Jeffrey, K.L., Chandwani, R., Papapetrou, E.P., Sadelain, M., O’Carroll, D., and Lai, E.C. (2010). Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl. Acad. Sci. USA 107, 15163–15168.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Tae Yeon Lee
    • 1
  • Chan Il Chang
    • 1
    • 2
    • 3
  • Dooyoung Lee
    • 4
  • Sun Woo Hong
    • 1
    • 5
  • Chanseok Shin
    • 4
  • Chiang J. Li
    • 2
  • Soyoun Kim
    • 5
  • Dirk Haussecker
    • 5
  • Dong-ki Lee
    • 1
    Email author
  1. 1.Global Research Laboratory for RNAi Medicine, Department of ChemistrySungkyunkwan UniversitySuwonKorea
  2. 2.Skip Ackerman Center for Molecular Therapeutics, Beth Israel Deconness Medical CenterHarvard Medical SchoolBostonUSA
  3. 3.BMT Inc.SeoulKorea
  4. 4.Department of Agricultural BiotechnologySeoul National UniversitySeoulKorea
  5. 5.Department of Medical BiotechnologyDongguk UniversitySeoulKorea

Personalised recommendations