Molecules and Cells

, Volume 35, Issue 4, pp 291–297

Inhibition of endoplasmic reticulum associated degradation reduces endoplasmic reticulum stress and alters lysosomal morphology and distribution

  • Hyung Lim Elfrink
  • Rob Zwart
  • Frank Baas
  • Wiep Scheper
Research Article

Abstract

Disturbances in proteostasis are observed in many neurodegenerative diseases. This leads to activation of protein quality control to restore proteostasis, with a key role for the removal of aberrant proteins by proteolysis. The unfolded protein response (UPR) is a protein quality control mechanism of the endoplasmic reticulum (ER) that is activated in several neurodegenerative diseases. Recently we showed that the major proteolytic pathway during UPR activation is via the autophagy/lysosomal system. Here we investigate UPR induction if the other major proteolytic pathway of the ER -ER associated degradation (ERAD)-is inhibited. Surprisingly, impairment of ERAD results in decreased UPR activation and protects against ER stress toxicity. Autophagy induction is not affected under these conditions, however, a striking relocalization of the lysosomes is observed. Our data suggest that a protective UPR-modulating mechanism is activated if ERAD is inhibited, which involves lysosomes. Our data provide insight in the cross-talk between proteolytic pathways involved in ER proteostasis. This has implications for neurodegenerative diseases like Alzheimer’s disease where disturbed ER proteostasis and proteolytic impairment are early phenomena in the pathology.

Keywords

Alzheimer’s disease endoplasmic reticulum stress lysosome unfolded protein response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avezov, E., Frenkel, Z., Ehrlich, M., Herscovics, A., and Lederkremer, G.Z. (2008). Endoplasmic reticulum (ER) mannosidase I is compartmentalized and required for N-glycan trimming to Man5-6GlcNAc2 in glycoprotein ER-associated degradation. Mol. Biol. Cell 19, 216–225.PubMedCrossRefGoogle Scholar
  2. Balch, W.E., Morimoto, R.I., Dillin, A., and Kelly, J.W. (2008). Adapting proteostasis for disease intervention. Science 319, 916–919.PubMedCrossRefGoogle Scholar
  3. Bernales, S., McDonald, K.L., and Walter, P. (2006). Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol. 4, e423.PubMedCrossRefGoogle Scholar
  4. Bernales, S., Schuck, S., and Walter, P. (2007). ER-phagy: selective autophagy of the endoplasmic reticulum. Autophagy 3, 285–287.PubMedGoogle Scholar
  5. Cali, T., Galli, C., Olivari, S., and Molinari, M. (2008). Segregation and rapid turnover of EDEM1 by an autophagy-like mechanism modulates standard ERAD and folding activities. Biochem. Biophys. Res. Commun. 371, 405–410.PubMedCrossRefGoogle Scholar
  6. Ding, W.X., Ni, H.M., Gao, W., Hou, Y.F., Melan, M.A., Chen, X., Stolz, D.B., Shao, Z.M., and Yin, X.M. (2007). Differential effects of endoplasmic reticulum stress-induced autophagy on cell survival. J. Biol. Chem. 282, 4702–4710.PubMedCrossRefGoogle Scholar
  7. Elfrink, H.L., Zwart, R., Cavanillas, M.L., Schindler, A.J., Baas, F., and Scheper, W. (2012). Rab6 is a modulator of the unfolded protein response: implications for Alzheimer’s disease. J. Alzheimers Dis. 28, 917–929.PubMedGoogle Scholar
  8. Fagioli, C., and Sitia, R. (2001). Glycoprotein quality control in the endoplasmic reticulum. Mannose trimming by endoplasmic reticulum mannosidase I times the proteasomal degradation of unassembled immunoglobulin subunits. J. Biol. Chem. 276, 12885–12892.PubMedCrossRefGoogle Scholar
  9. Haberman, A., Williamson, W.R., Epstein, D., Wang, D., Rina, S., Meinertzhagen, I.A., and Hiesinger, P.R. (2012). The synaptic vesicle SNARE neuronal Synaptobrevin promotes endolysosomal degradation and prevents neurodegeneration. J. Cell Biol. 196, 261–276.PubMedCrossRefGoogle Scholar
  10. Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resis-tance to oxidative stress. Mol. Cell 11, 619–633.PubMedCrossRefGoogle Scholar
  11. Hebert, D.N., Garman, S.C., and Molinari, M. (2005). The glycan code of the endoplasmic reticulum: asparagine-linked carbohydrates as protein maturation and quality-control tags. Trends Cell Biol. 15, 364–370.PubMedCrossRefGoogle Scholar
  12. Hetz, C., Thielen, P., Matus, S., Nassif, M., Court, F., Kiffin, R., Martinez, G., Cuervo, A.M., Brown, R.H., and Glimcher, L.H. (2009). XBP-1 deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing autophagy. Genes Dev. 23, 2294–2306.PubMedCrossRefGoogle Scholar
  13. Hoozemans, J.J., Veerhuis, R., Rozemuller, A.J., Baas, F., Eikelenboom, P., and Scheper, W. (2005). The unfolded protein response is activated in Alzheimer’s disease. Acta Neuropathol. (Berl) 110, 165–172.CrossRefGoogle Scholar
  14. Hoozemans, J.J.M., Van Haastert, E.S., Nijholt, D.A.T., Rozemuller, A.J.M., Eikelenboom, P., and Scheper, W. (2009). The Unfolded Protein Response is activated in pretangle neurons in Alzheimer’s disease hippocampus. Am. J. Pathol. 174, 1241–1251.PubMedCrossRefGoogle Scholar
  15. Hosokawa, N., Tremblay, L.O., You, Z., Herscovics, A., Wada, I., and Nagata, K. (2003). Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J. Biol. Chem. 278, 26287–26294.PubMedCrossRefGoogle Scholar
  16. Hosokawa, N., Hara, Y., and Mizushima, N. (2006). Generation of cell lines with tetracycline-regulated autophagy and a role for autophagy in controlling cell size. FEBS Lett. 580, 2623–2629.PubMedCrossRefGoogle Scholar
  17. Kanuka, H., Kuranaga, E., Hiratou, T., Igaki, T., Nelson, B., Okano, H., and Miura, M. (2003). Cytosol-endoplasmic reticulum interplay by Sec61alpha translocon in polyglutamine-mediated neurotoxicity in Drosophila. Proc. Natl. Acad. Sci. USA 100, 11723–11728.PubMedCrossRefGoogle Scholar
  18. Kanuka, H., Hiratou, T., Igaki, T., Kanda, H., Kuranaga, E., Sawamoto, K., Aigaki, T., Okano, H., and Miura, M. (2005). Gain-offunction screen identifies a role of the Sec61alpha translocon in Drosophila postmitotic neurotoxicity. Biochim. Biophys. Acta 1726, 225–237.PubMedCrossRefGoogle Scholar
  19. Korolchuk, V.I., Saiki, S., Lichtenberg, M., Siddiqi, F.H., Roberts, E.A., Imarisio, S., Jahreiss, L., Sarkar, S., Futter, M., Menzies, F.M., et al. (2011). Lysosomal positioning coordinates cellular nutrient responses. Nat. Cell Biol. 13, 453–460.PubMedCrossRefGoogle Scholar
  20. Miura, H., Hashida, K., Sudo, H., Awa, Y., Takarada-Iemata, M., Kokame, K., Takahashi, T., Matsumoto, M., Kitao, Y., and Hori, O. (2010). Deletion of Herp facilitates degradation of cytosolic proteins. Genes Cells 15, 843–853.PubMedGoogle Scholar
  21. Molinari, M., Calanca, V., Galli, C., Lucca, P., and Paganetti, P. (2003). Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299, 1397–1400.PubMedCrossRefGoogle Scholar
  22. Nakatsukasa, K., and Brodsky, J.L. (2008). The recognition and retrotranslocation of misfolded proteins from the endoplasmic reticulum. Traffic 9, 861–870.PubMedCrossRefGoogle Scholar
  23. Nijholt, D.A., de Graaf, T.R., Van Haastert, E.S., Oliveira, A.O., Berkers, C.R., Zwart, R., Ovaa, H., Baas, F., Hoozemans, J.J., and Scheper, W. (2011a). Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer’s disease. Cell Death Differ. 18, 1071–1081.PubMedCrossRefGoogle Scholar
  24. Nijholt, D.A., De, K.L., Elfrink, H.L., Hoozemans, J.J., and Scheper, W. (2011b). Removing protein aggregates: the role of proteolysis in neurodegeneration. Curr. Med. Chem. 18, 2459–2476.PubMedCrossRefGoogle Scholar
  25. Nijholt, D.A., Van Haastert, E.S., Rozemuller, A.J., Scheper, W., and Hoozemans, J.J. (2012). The unfolded protein response is associated with early tau pathology in the hippocampus of tauopathies. J. Pathol. 226, 693–702.PubMedCrossRefGoogle Scholar
  26. Nixon, R.A., and Yang, D.S. (2011). Autophagy failure in Alzheimer’s disease-locating the primary defect. Neurobiol. Dis. 43, 38–45.PubMedCrossRefGoogle Scholar
  27. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol. Cell. Biol. 26, 9220–9231.PubMedCrossRefGoogle Scholar
  28. Rafiq, M.A., Kuss, A.W., Puettmann, L., Noor, A., Ramiah, A., Ali, G., Hu, H., Kerio, N.A., Xiang, Y., Garshasbi, M., et al. (2011). Mutations in the alpha 1,2-mannosidase gene, MAN1B1, cause autosomal-recessive intellectual disability. Am. J. Hum. Genet. 89, 176–182.PubMedCrossRefGoogle Scholar
  29. Ron, D., and Walter, P. (2007). Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519–529.PubMedCrossRefGoogle Scholar
  30. Ron, E., Shenkman, M., Groisman, B., Izenshtein, Y., Leitman, J., and Lederkremer, G.Z. (2011). Bypass of glycan-dependent glycoprotein delivery to ERAD by up-regulated EDEM1. Mol. Biol. Cell 22, 3945–3954.PubMedCrossRefGoogle Scholar
  31. Scheper, W., and Hoozemans, J.J. (2009). Endoplasmic reticulum protein quality control in neurodegenerative disease: the good, the bad and the therapy. Curr. Med. Chem. 16, 615–626.PubMedCrossRefGoogle Scholar
  32. Scheper, W., Nijholt, D.A., and Hoozemans, J.J. (2011). The unfolded protein response and proteostasis in Alzheimer disease: preferential activation of autophagy by endoplasmic reticulum stress. Autophagy 7, 910–911.PubMedCrossRefGoogle Scholar
  33. Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A. (2006). Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7, 880–885.PubMedCrossRefGoogle Scholar
  34. Tyler, R.E., Pearce, M.M., Shaler, T.A., Olzmann, J.A., Greenblatt, E.J., and Kopito, R.R. (2012). Unassembled CD147 is an endogenous endoplasmic reticulum-associated degradation substrate. Mol. Biol. Cell 23, 4668–4678.PubMedCrossRefGoogle Scholar
  35. Vembar, S.S., and Brodsky, J.L. (2008). One step at a time: endoplasmic reticulum-associated degradation. Nat. Rev. Mol. Cell Biol. 9, 944–957.PubMedCrossRefGoogle Scholar
  36. Wang, F., Song, W., Brancati, G., and Segatori, L. (2011). Inhibition of endoplasmic reticulum-associated degradation rescues native folding in loss of function protein misfolding diseases. J. Biol. Chem. 286, 43454–43464.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Hyung Lim Elfrink
    • 1
  • Rob Zwart
    • 1
  • Frank Baas
    • 1
    • 2
  • Wiep Scheper
    • 1
    • 2
  1. 1.Department of Genome AnalysisAcademic Medical CenterAmsterdamthe Netherlands
  2. 2.Department of NeurologyAcademic Medical CenterAmsterdamthe Netherlands

Personalised recommendations