Molecules and Cells

, Volume 35, Issue 1, pp 79–86 | Cite as

Effects of sphingosine-1-phosphate on pacemaker activity of interstitial cells of Cajal from mouse small intestine

  • Young Dae Kim
  • Kyoung Taek Han
  • Jun Lee
  • Chan Guk Park
  • Man Yoo Kim
  • Pawan Kumar Shahi
  • Dong Chuan Zuo
  • Seok Choi
  • Jae Yeoul Jun
Research Article

Abstract

Interstitial cells of Cajal (ICC) are the pacemaker cells that generate the rhythmic oscillation responsible for the production of slow waves in gastrointestinal smooth muscle. Spingolipids are known to present in digestive system and are responsible for multiple important physiological and pathological processes. In this study, we are interested in the action of sphingosine 1-phosphate (S1P) on ICC. S1P depolarized the membrane and increased tonic inward pacemaker currents. FTY720 phosphate (FTY720P, an S1P1,3,4,5 agonist) and SEW 2871 (an S1P1 agonist) had no effects on pacemaker activity. Suramin (an S1P3 antagonist) did not block the S1P-induced action on pacemaker currents. However, JTE-013 (an S1P2 antagonist) blocked the S1P-induced action. RT-PCR revealed the presence of the S1P2 in ICC. Calphostin C (a protein kinase C inhibitor), NS-398 (a cyclooxygenase-2 inhibitor), PD 98059 (a p42/44 inhibitor), or SB 203580 (a p38 inhibitor) had no effects on S1P-induced action. However, c-jun NH2-terminal kinase (JNK) inhibitor II suppressed S1P-induced action. External Ca2+-free solution or thapsigargin (a Ca2+-ATPase inhibitor of endoplasmic reticulum) suppressed action of S1P on ICC. In recording of intracellular Ca2+ ([Ca2+]i) concentration using fluo-4/AM S1P increased intensity of spontaneous [Ca2+]i oscillations in ICC. These results suggest that S1P can modulate pacemaker activity of ICC through S1P2 via regulation of external and internal Ca2+ and mitogenactivated protein kinase activation.

Keywords

interstitial cells of Cajal intestinal motility pacemaker activity sphingosine-1-phosphate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemany, R., Sichelschmidt, B., Zu Heringdorf, D.M., Lass, H., Van Koppen, C.J., and Jakobs, K.H. (2000). Stimulation of sphingosine-1-phosphate formation by the P2Y2 receptor in HL-60 cells: Ca2+ requirement and implication in receptor-mediated Ca2+ mobilization, but not MAP kinase activation. Mol. Pharmacol. 58, 491–497.PubMedGoogle Scholar
  2. Alvarez, S.E., Milstien, S., and Spiegel, S. (2007). Autocrine and paracrine roles of sphingosine-1-phosphate. Trends Endocrin. Metab. 18, 300–307.CrossRefGoogle Scholar
  3. Anliker, B., and Chun, J. (2004). Lysophospholipid G protein-coupled receptors. J. Biol. Chem. 279, 20555–20558.PubMedCrossRefGoogle Scholar
  4. Bischoff, A., Czyborra, P., Fetscher, C., Meyer Zu Heringdorf, D., Jakobs, K.H., and Michel, M.C. (2000). Sphingosine 1 phosphate and sphingosylphosphorylcholine constrict renal and mesenteric microvessels in vitro. Br. J. Pharmacol. 130, 1871–1877.PubMedCrossRefGoogle Scholar
  5. Blom, T., Slotte, J.P., Pitson, S.M., and Törnquist, K. (2005). Enhan-cement of intracellular sphingosine-1-phosphate production by inositol 1, 4, 5-trisphosphate-evoked calcium mobilisation in HEK-293 cells: endogenous sphingosine-1-phosphate as a modulator of the calcium response. Cell. Signal. 17, 827–836.PubMedCrossRefGoogle Scholar
  6. Choi, S., Yeum, C.H., Kim, Y.D., Park, C.G., Kim, M.Y., Park, J.S., Jeong, H.S., Kim, B.J., So, I., and Kim, K.W. (2010). Receptor tyrosine and MAP kinase are involved in effects of H2O2 on interstitial cells of Cajal in murine intestine. J. Cell. Mol. Med. 14, 257–266.PubMedCrossRefGoogle Scholar
  7. Dragusin, M., Wehner, S., Kelly, S., Wang, E., Merrill Jr, A.H., Kalff, J.C., and Van Echten-Deckert, G. (2006). Effects of sphingosine-1-phosphate and ceramide-1-phosphate on rat intestinal smooth muscle cells: implications for postoperative ileus. FASEB J. 20, 1930–1932.PubMedCrossRefGoogle Scholar
  8. Fukata, Y., Kaibuchi, K., and Amano, M. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol. Sci. 22, 32–39.PubMedCrossRefGoogle Scholar
  9. Furness, J.B., Hind, A.J., Ngui, K., Robbins, H.L., Clerc, N., Merrot, T., Tjandra, J.J., and Poole, D.P. (2006). The distribution of PKC isoforms in enteric neurons, muscle and interstitial cells of the human intestine. Histochem. Cell Biol. 126, 537–548.PubMedCrossRefGoogle Scholar
  10. Hemmings, D.G. (2006). Signal transduction underlying the vascular effects of sphingosine 1-phosphate and sphingosylphosphorylcholine. Naunyn Schmiedebergs Arch. Pharmacol. 373, 18–29.PubMedCrossRefGoogle Scholar
  11. Hla, T. (2004). Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 513–520.Google Scholar
  12. Huizinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., and Bernstein, A. (1995). W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–349.PubMedCrossRefGoogle Scholar
  13. Huizinga, J.D., Zhu, Y., Ye, J., and Molleman, A. (2002). Highconductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 123, 1627–1636.PubMedCrossRefGoogle Scholar
  14. Kim, B.J., Lim, H.H., Yang, D.K., Jun, J.Y., Chang, I.Y., Park, C.S., So, I., Stanfield, P.R., and Kim, K.W. (2005). Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504–1517.PubMedCrossRefGoogle Scholar
  15. Mostafa, R.M., Moustafa, Y.M., and Hamdy, H. (2010). Interstitial cells of Cajal, the Maestro in health and disease. World J. Gastroenterol. 16, 3239.PubMedCrossRefGoogle Scholar
  16. Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., Ui, M., and Okajima, F. (2000). Interaction of sphingosine 1-phosphate with plasma components, including lipoproteins, regulates the lipid receptor-mediated actions. Biochem. J. 352, 809–815.PubMedCrossRefGoogle Scholar
  17. Nakayama, S., Kajioka, S., Goto, K., Takaki, M., and Liu, H.N. (2007). Calcium associated mechanisms in gut pacemaker activity. J. Cell. Mol. Med. 11, 958–968.PubMedCrossRefGoogle Scholar
  18. Nodai, A., Machida, T., Izumi, S., Hamaya, Y., Kohno, T., Igarashi, Y., Iizuka, K., Minami, M., and Hirafuji, M. (2007). Sphingosine 1-phosphate induces cyclooxygenase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80, 1768–1776.PubMedCrossRefGoogle Scholar
  19. Pfaff, M., Powaga, N., Akinci, S., Schütz, W., Banno, Y., Wiegand, S., Kummer, W., Wess, J., and Haberberger, R.V. (2005). Activation of the SPHK/S1P signalling pathway is coupled to muscarinic receptor-dependent regulation of peripheral airways. Respir. Res. 6, 48.PubMedCrossRefGoogle Scholar
  20. Porcher, C., Horowitz, B., Bayguinov, O., Ward, S.M., and Sanders, K.M. (2002). Constitutive expression and function of cyclooxygenase-2 in murine gastric muscles. Gastroenterology 122, 1442–1454.PubMedCrossRefGoogle Scholar
  21. Rosenfeldt, H.M., Amrani, Y., Watterson, K.R., Murthy, K.S., Panettieri, R.A.Jr., and Spiegel, S. (2003). Sphingosine-1-phosphate stimulates contraction of human airway smooth muscle cells. FASEB J. 17, 1789–1799.PubMedCrossRefGoogle Scholar
  22. Salomone, S., Potts, E., Tyndall, S., Ip, P., Chun, J., Brinkmann, V., and Waeber, C. (2008). Analysis of sphingosine 1 phosphate receptors involved in constriction of isolated cerebral arteries with receptor null mice and pharmacological tools. Br. J. Pharmacol. 153, 140–147.PubMedCrossRefGoogle Scholar
  23. Sanchez, T., and Hla, T. (2004). Structural and functional charac teristics of S1P receptors. J. Cell. Biochem. 92, 913–922.PubMedCrossRefGoogle Scholar
  24. Sanders, K.M. (1996). A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515.PubMedCrossRefGoogle Scholar
  25. Song, H.J., Choi, T.S., Chung, F.Y., Park, S.Y., Ryu, J.S., Woo, J.G., Min, Y.S., Shin, C.Y., and Sohn, U.D. (2006). Sphingosine 1-phosphate-induced signal transduction in cat esophagus smooth muscle cells. Mol. Cells 21, 42–51.PubMedGoogle Scholar
  26. Spiegel, S., and Merrill, Jr. A. (1996). Sphingolipid metabolism and cell growth regulation. FASEB J. 10, 1388–1397.PubMedGoogle Scholar
  27. Takuwa, Y., Okamoto, H., Takuwa, N., Gonda, K., Sugimoto, N., and Sakurada, S. (2001). Subtype-specific, differential activities of the EDG family receptors for sphingosine-1-phosphate, a novel lysophospholipid mediator. Mol. Cell. Endocrinol. 177, 3–11.PubMedCrossRefGoogle Scholar
  28. Van Koppen, C.J., Meyer zu Heringdorf, D., Alemany, R., and Jakobs, K.H. (2001). Sphingosine kinase-mediated calcium signaling by muscarinic acetylcholine receptors. Life Sci. 68, 2535–2540.PubMedCrossRefGoogle Scholar
  29. Ward, S.M., Burns, A.J., Torihashi, S., and Sanders, K.M. (1994). Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–97.PubMedGoogle Scholar
  30. Ward, S., Ordög, T., Koh, S., Baker, S.A., Jun, J., Amberg, G., Monaghan, K., and Sanders, K.M. (2000). Pacemaking in interstitial cells of Cajal depends upon calcium handling by endoplasmic reticulum and mitochondria. J. Physiol. 525, 355–361.PubMedCrossRefGoogle Scholar
  31. Watterson, K.R., Ratz, P.H., and Spiegel, S. (2005). The role of sphingosine-1-phosphate in smooth muscle contraction. Cell. Signal. 17, 289–298.PubMedCrossRefGoogle Scholar
  32. Young, K., and Nahorski, S. (2002). Sphingosine 1-phosphate: a Ca2+ release mediator in the balance. Cell Calcium 32, 335–341.PubMedCrossRefGoogle Scholar
  33. Zhou, H., and Murthy, K.S. (2004). Distinctive G protein-dependent signaling in smooth muscle by sphingosine 1-phosphate receptors S1P1 and S1P2. Am. J. Physiol. Cell Physiol. 286, C1130–C1138.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Young Dae Kim
    • 2
  • Kyoung Taek Han
    • 2
  • Jun Lee
    • 2
  • Chan Guk Park
    • 2
  • Man Yoo Kim
    • 2
  • Pawan Kumar Shahi
    • 1
  • Dong Chuan Zuo
    • 1
  • Seok Choi
    • 1
  • Jae Yeoul Jun
    • 1
  1. 1.Department of PhysiologyChosun UniversityGwangjuKorea
  2. 2.Department of Internal Medicine, College of MedicineChosun UniversityGwangjuKorea

Personalised recommendations