Skip to main content
Log in

Assessing the diverse functions of BAK1 and its homologs in arabidopsis, beyond BR signaling and PTI responses

  • Minireview
  • Published:
Molecules and Cells

Abstract

Plants possess a variety of extracellular leucine-rich repeats receptor-like kinases (LRR-RLKs) to coordinate developmental programs with responses to environmental changes. Out of sixteen families of LRR-RLKs in Arabidopsis, the LRR-RLKII family consists of fourteen individual members, including five Arabidopsis thaliana somatic embryogenesis receptor kinases (AtSERKs). BAK1/AtSERK3 was first identified as a dual co-receptor of BRI1 and FLS2, mediating BR signaling and pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), respectively. Since its identification, many researchers have attempted to elucidate the phosphorylation mechanisms between receptor complexes and identify additional components that interact with receptor complexes to transduce the signaling downstream. Relatively detailed early events in complex formation, phosphorylation sites on the BRI1/BAK1 complex and BAK1-interacting proteins, such as BIK1 and PUB13, have been identified. Small receptor complexes consisting of BAK1 and BIR1 or BAK1 and AtSERK4 regulate cell death during steady state conditions. Moreover, the redundant and distinct functions of AtSERK proteins and other members of the LRR-RLKII family have been revealed. This review focuses on the integration of the information from the most recent studies concerning BAK1 and its homologs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, C., Russivano, E., Hecht, V., Baaijens, E., and de Vries, S. (2005). The Arabidopsis thaliana SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASES1 and 2 control male sporogenesis. Plant Cell 17, 3337–3349.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, C., Russinova, E., Kemmerling, B., Kwaaitaal, M., and de Vries, S.C. (2008). Arabidopsis somatic embryogenesis receptor kinase proteins serve brassinosteroid-dependent and -independent signaling pathways. Plant Physiol. 148, 611–619.

    Article  PubMed  CAS  Google Scholar 

  • Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S., Chinchilla, D., Rathjen, J.P., de Vries, S.C., and Zipfel, C. (2012). Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 109, 303–308.

    Article  PubMed  CAS  Google Scholar 

  • Bajguz, A., and Hayat, S. (2009). Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol. Biochem. 47, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • Belkhadir, Y., Jaillais, Y., Epple, P., Balsemão-Pires, E., Dangl, J.L., and Chory, J. (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109, 297–302.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, G.J. (2007). Refining the plant steroid hormone biosynthesis pathway. Trends Plant Sci. 12, 377–380.

    Article  PubMed  CAS  Google Scholar 

  • Boller, T., and Felix, G. (2009). A renaissance of elicitors: Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60, 379–406.

    Article  PubMed  CAS  Google Scholar 

  • Canales, C., Bhatt, A.M., Scott, R., and Dickinson, H. (2002). EXS, a putative LRR receptor kinase, regulates male germline cell number and tapetal identity and promotes seed development in Arabidopsis. Curr. Biol. 12, 1718–1727.

    Article  PubMed  CAS  Google Scholar 

  • Carvalho, C.M., Santos, A.A., Pires, S.R., Rocha, C.S., Saraiva, D. I., Machado, J.P.B., Mattos, E.C., Fietto, L.G., and Fontes, E. P.B. (2008). Regulated nuclear trafficking of rpL10A mediated by NIK1 represents a defense strategy of plant cells against virus. PLoS Pathog. 4, e1000247.

    Article  PubMed  Google Scholar 

  • Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nürnberger, T., Jones, J.D.G., Felix, G., and Boller, T. (2007). A flagellininduced complex of the receptor FLS2 and BAK1 initiates plant defense. Nature 448, 497–500.

    Article  PubMed  CAS  Google Scholar 

  • Chinchilla, D., Shan, L., He, P., de Vries, S., and Kemmerling, B. (2009). One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 14, 535–541.

    Article  PubMed  CAS  Google Scholar 

  • Choe, S., Tanaka, A., Noguchi, T., Fujioka, S., Takatsuto, S., Ross, A.S., Tax, F.E., Yoshida, S., and Feldmann, K.A. (2000). Lesions in the sterol delta reductase gene of Arabidopsis cause dwarfism due to a block in brassinosteroid biosynthesis. Plant J. 21, 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Clark, S.E., Williams, R.W., and Meyerowitz, E.M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 59, 575–585.

    Article  Google Scholar 

  • Clouse, S.D. (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23, 1219–1230.

    Article  PubMed  CAS  Google Scholar 

  • Colcombet, J., Boisson-Dernier, A., Ros-Palau, R., Vera, C.E., and Schroeder, J.I. (2005). Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE1 and 2 are essential for tapetum development and microspore maturation. Plant Cell 17, 3350–3361.

    Article  PubMed  CAS  Google Scholar 

  • Divi, U.K., Rahman, T., and Krishna, P. (2010). Brassinosteroidmediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol. 10, 151.

    Article  PubMed  Google Scholar 

  • Du, J., Yin, H., Zhang, S., Wei, Z., Zhao, B., Zhang, J., Gou, X., Lin, H., and Li, J. (2012). Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in Arabidopsis thaliana. J. Integ. Plant Biol. 54, 388–399.

    Article  CAS  Google Scholar 

  • Fontes, E.P.B., Santos, A.A., Luz, D.F., Waclawovsky, A.J., and Chory, J. (2004). The geminivirus nuclear shuttle protein is a virulence factor that suppresses transmembrane receptor kinase activity. Genes Dev. 18, 2545–2556.

    Article  PubMed  CAS  Google Scholar 

  • Gao, M., Wang, X., Wang, D., Xu, F., Ding, X., Zhang, Z., Bi, D., Cheng, Y.T., Chen, S., Li, X., et al. (2009). Regulation of cell death and innate immunity by two receptor-like kinases in Arabidopsis. Cell Host Microbe 6, 34–44.

    Article  PubMed  CAS  Google Scholar 

  • Gao, J., Ma, Y., Sun, Y., Zhao, H., Hong, D., Yana, L., and Loua, Z. (2012). Crystallization and preliminary crystallographic analysis of Arabidopsis thaliana BRI1-associated kinase 1 (BAK1) cytoplasmic domain. Acta Cryst. F68, 340–342.

    CAS  Google Scholar 

  • Gómez-Gómez, L., and Boller, T. (2000). FLS2: an LRR receptorlike kinase involved in the perception of bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5, 1003–1011.

    Article  PubMed  Google Scholar 

  • Gou, X., Yin, H., Du, J., Yi, J., Xu, S., Lin, H., Clouse, S.D., and Li, J. (2012). Genetic evidence for an indispensable role of somatic embryogenesis receptor kinases in brassinosteroid signaling. PLoS Genet. 8, e1002452.

    Article  PubMed  CAS  Google Scholar 

  • He, K., Gou, X., Yuan, T., Lin, H., Asami, T., Yoshida, S., Russle, S.D., and Li, J. (2007). BAK1 and BKK1 regulate brassinosteroid-dependent growth and brassinosteroid-independent celldeath pathways. Curr. Biol. 17, 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Hecht, V., Veille-Calzada, J.P., Hartog, M.V., Schmidt, E.D., Boutilier, K., Grossniklaus, U., and de Vries, S.C. (2001). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR KINASE 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol. 127, 803–816.

    Article  PubMed  CAS  Google Scholar 

  • Heese, A., Hann, D.R., Glimenez-Ibanez, S., Jones, A.M.E., He, K., Li, J., Schroeder, J.I., Peck, S.C., and Rathjen, J.P. (2007). The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants. Proc. Natl. Acad. Sci. USA 104, 12217–12222.

    Article  PubMed  CAS  Google Scholar 

  • Hothorn, M., Belkhadir, Y., Dreux, M., Dabi, T., Noel, J.P., Wilson, I.A., and Chory, J. (2011). Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature 474, 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Huffaker, A., Pearce, G., and Ryan, C.A. (2006). An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103, 10098–10103.

    Article  PubMed  CAS  Google Scholar 

  • Jaillais, Y., Belkhadir, Y., Balsemão-Pires, E., Dangl, J.L., and Chory, C. (2011a). Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proc. Natl. Acad. Sci. USA 108, 8503–8507.

    Article  PubMed  CAS  Google Scholar 

  • Jaillais, Y., Hothorn, M., Belkhadir, Y., Dabi, T., Nimchuk, Z.L., Meyerowitz, E.M., and Chory, C. (2011b). Tyrosine phosphorylation controls brassinosteroid receptor activation by triggering membrane release of its kinase inhibitor. Genes Dev. 25, 232–237.

    Article  PubMed  CAS  Google Scholar 

  • Janssens, S., and Beyaert, R. (2003). Functional diversity and regulation of different interlukin-1 receptor-associated kinase (IRAK) family members. Mol. Cell 11, 293–392.

    Article  PubMed  CAS  Google Scholar 

  • Jeong, Y.J., Shang, Y., Kim, B.H., Kim, S.Y., Song, J.H., Lee, J.S., Lee, M.M., Li, J., and Nam, K.H. (2010). BAK7 displays unequal genetic redundancy with BAK1 in brassinosteroid signaling and early senescence in Arabidopsis. Mol. Cells 29, 259–266.

    Article  PubMed  CAS  Google Scholar 

  • Jinn, T.L., Stone, J.M., and Walker, J.C. (2000). HAESA, an Arabi dopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev. 14, 108–117.

    PubMed  CAS  Google Scholar 

  • Karlova, R., Boeren, S., Russinova, E., Aker, J., Vervoort, J., and de Vries, S. (2006). The Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 protein complex includes BRASSINOSTEROID-INSENSITIVE1. Plant Cell 18, 625–638.

    Google Scholar 

  • Karlova, R., Boeren, S., van Dongen, W., Kwaaitaal, M., Aker, J., Vervoort, J., and de Vries, S. (2009). Identification of in vitro phosphorylation sites in the Arabidopsis thaliana somatic embryogenesis receptor-like kinases. Proteomics 9, 368–379.

    Article  PubMed  CAS  Google Scholar 

  • Kemmerling, B., Schwedt, A., Rodriguez, P., Mazzotta, S., Frank, M., Qamar, S.A., Mengiste, T., Betsuyaku, S., Parker, J.E., Müssig, C., et al. (2007). The BRI1-aossociated kinase 1, BAK1, has a brassinolide-independent role in plant cell-death control. Curr. Biol. 17, 1116–1122.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.W., and Wang, Z.Y. (2010). Brassinosteroid signal transduction from receptor kinases to transcription factors. Annu. Rev. Plant Biol. 61, 681–704.

    Article  PubMed  CAS  Google Scholar 

  • Kim, T.W., Guan, S., Burlingame, A.L., and Wang, Z.Y. (2011). The CDG1 kinase mediate brassinosteroid signal transduction from BRI1 receptor kinase to BSU1 phosphatase and GSK3-like kinase BIN2. Mol. Cell 43, 561–571.

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita, T., Caňo-Delgado, A., Seto, H., Hiranuma, S., Fujuika, S., and Chory, J. (2005). Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167–171.

    Article  PubMed  CAS  Google Scholar 

  • Krol, E., Mentzel, T., Chinchilla, D., Boller, T., Felix, G., Kemmerling, B., Postel, S., Arents, M., Jeworutzki, E., Al-Rasheid, K.A.S., et al. (2010). Perception of the Arabidopsis danger signal peptide 1 involves the pattern recognition receptor AtPEPR1 and its close homologue AtPEPR2. J. Biol. Chem. 285, 13471–13479.

    Article  PubMed  CAS  Google Scholar 

  • Lehti-Shiu, M.D., Zou, C., Hanada, K., and Shiu, S.H. (2009). Evolutionary history and stress regulation of plant receptor-like kinase/Pelle genes. Plant Physiol. 150, 12–26.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., and Chory, J. (1997). A putative leucine-rich repeat receptor kinase involve in brassinosteroid signal transduction. Cell 90, 927–938.

    Google Scholar 

  • Li, J., Nagpal, P., Vitart, V., McMorris, T.C., and Chory, J. (1996). A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272, 398–401.

    Article  PubMed  CAS  Google Scholar 

  • Li, J., Wen, J., Lease, K.A., Dorke, J.T., Tax, F.E., and Walker, J.C. (2002). BAK1, an Arabidopsis LRR receptor-like kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110, 213–222.

    Article  PubMed  CAS  Google Scholar 

  • Li, Y., Pennington, B.O., and Hua, J. (2009). Multiple R-like genes are negatively regulated by BON1 and BON3 in Arabidopsis. Mol. Plant Microbe Interact. 22, 840–848.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Wu, S., Gao, X., Zhang, Y., Shan, L., and He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107, 496–501.

    Article  PubMed  CAS  Google Scholar 

  • Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and Shan, L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332, 1438–1442.

    Google Scholar 

  • Mandava, N.B. (1988). Plant growth-promoting brassinosteroids. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 23–52.

    Article  CAS  Google Scholar 

  • Nakashita, H., Yasuda, M., Nitta, T., Asami, T., Fujioka, S., Arai, Y., Sekimato, K., Takatsuto, S., Yamaguchi, I., and Yosida, S. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 33, 887–898.

    Article  PubMed  CAS  Google Scholar 

  • Nam, K.H., and Li, J. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110, 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Nekrasov, V., Li, J., Batoux, M., Roux, M., Chu, Z.H., Lacombe, S., Rougon, A., Bittel, P., Kiss-Papp, P, Chinchilla, D., et al. (2009). Control of the pattern-recognition receptor EFR by an ER protein complex in plant immunity. EMBO J. 28, 3428–3438.

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, T., Fusioka, S., Choe, S., Takatsuto, S., Yoshida, S., Yuan, H., Feldmann, K.A., and Tax, F.E. (1999). Brassinosteroidinsensitive dwarf mutants of Arabidopsis accumulates brassinosteroids. Plant Physiol. 121, 743–752.

    Article  PubMed  CAS  Google Scholar 

  • Nolan, K.E., Irwanto, R.R., and Rose, R.J. (2003). Auxin up-regulates MtSERK1 expression in both Medicago truncatula and root-forming and embryogenic cultures. Plant Physiol. 133, 218–230.

    Article  PubMed  CAS  Google Scholar 

  • Oh, M.H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., and Huber, S.C. (2009). Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 106, 658–663.

    Article  PubMed  CAS  Google Scholar 

  • Oh, M.A., Sun, J., Oh, D.H., Zielinski, R.E., Clouse, S.D., and Huber, S.C. (2011). Enhancing Arabidopsis leaf growth by engineering the BRASSINOSTEROID INSENSITIVE1 receptor kinase. Plant Physiol. 157, 120–131.

    Article  PubMed  CAS  Google Scholar 

  • Postel, S., Küfner, I., Beuter, C., Mazzotta, S., Schwedt, A., Borlotti, A., Halter, T., Kemmering, B., and Nürnberger, T. (2010). The multifunctional leucine-rich repeat receptor kinase BAK1 is implicated in Arabidopsis development and immunity. Eur. J. Cell Biol. 89, 169–174.

    Article  PubMed  CAS  Google Scholar 

  • Robatzek, S., Chinchilla, D., and Boller, T. (2006). Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 20, 537–542.

    Article  PubMed  CAS  Google Scholar 

  • Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.G., Tör, M., de Vries, S., and Zipfel, C. (2011). The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens. Plant Cell 23, 2440–2455.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, E.D., Guzzo, F., Toonen, M.A., and de Vries, S.C. (1997). A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124, 2049–2062.

    PubMed  CAS  Google Scholar 

  • Schulze, B., Mentzel, T., Jehle, A.K., Mueller, K., Beeler, S., Boller, T., Felix, G., and Chinchilla, D. (2010). Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285, 9444–9451.

    Article  PubMed  CAS  Google Scholar 

  • Schwessinger, B., Roux, M., Kadota, Y., Ntoukakis, V., Sklenar, J., Jones, A., and Zipfel, C. (2011). Phosphorylation-dependent differential regulation of plant growth, cell death, and innate immunity by the regulatory receptor-like kinase BAK1. PLoS Genet. 7, e1002640.

    Article  Google Scholar 

  • She, J., Han, Z., Kim, T.W., Wang, J., Cheng, W., Chang, J., Shi, S., Wang, J., Yang, M., Wang, Z.Y., et al. (2011). Structural insight into brassinosteroid perception by BRI1. Nature 474, 472–488.

    Article  PubMed  CAS  Google Scholar 

  • Shelton, C.A., and Wasserman, S.A. (1993) Pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72, 515–525.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, T., Hirabayashi, T., Endo, T., Fujii, H, Kita, M., and Omura, M. (2005). Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK) from Citrus unshiu Marc. Sci. Hortic. 103, 233–238.

    Article  CAS  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B. (2001a). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. USA 98, 10763–10768.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B. (2001b.) Plant receptor-like kinases gene family: diversity, function and signaling. Sci. STKE 2001, RE22.

    Article  PubMed  CAS  Google Scholar 

  • Shiu, S.H., and Bleecker, A.B. (2003). Expansion of the receptorlike kinase/Pelle gene family and receptor-like proteins in Arabidopsis. Plant Physiol. 132, 530–543.

    Article  PubMed  CAS  Google Scholar 

  • Shpak, E.D., McAbee, J.M., Pillitteri, L.J., and Torii, K.U. (2005). Stomatal patterning and differentiation by synergistic interactions of receptor kinases. Science 309, 290–293.

    Article  PubMed  CAS  Google Scholar 

  • Szekeres, M., Németh, K., Koncz-Kálmán, Z., Mathur, J., Kauschmann, A., Altmann, T., Rédei, G.P., Nagy, F., Schell, J., and Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182.

    Article  PubMed  CAS  Google Scholar 

  • Tang, W., Deng, Z., Oses-Prieto, J.A., Suzuki, N., Zhu, S.W., Zhang, X., Burlingame, A.L., and Wang, Z.Y. (2008a). Proteomic studies of brassinosteroid signal transduction using prefractionation and two-dimensional DIGE. Mol. Cell. Proteomics 7, 728–738.

    PubMed  CAS  Google Scholar 

  • Tang, W., Kim, T.W., Oses-Prieto, J.A., Sun, Y., Deng, Z., Zhu, Z., Wang, R., Burlingame, A.L., and Wang, Z.Y. (2008b). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, C., Meyer, D., Himber, C., and Steinmerz, A. (2004). A special expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol. Biochem. 42, 34–42.

    Article  Google Scholar 

  • Torri, K.U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R.F., and Komeda, Y. (1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8, 735–746.

    Google Scholar 

  • Veronese, P., Nakagami, H., Bluhm, S., AbuQumar, S., Chen, X., Salmeron, J., Dietrich, R.A., Hirt, H., and Mengiste, T. (2006). The Membrane-anchored BOTRYTIS-INDUCED KINASE1 plays distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. Plant Cell 18, 257–273.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., and Chory, J. (2006). Brassinosteroids regulate dissociation of BKI1, a negative regulator of BRI1 signaling from a plasma membrane. Science 131, 1118–1122.

    Article  Google Scholar 

  • Wang, X., Li, X., Meisenhelder, J., Hunter, T., Yoshida, S., Asami, T., and Chory, J. (2005a). Autoregulation and homodimerization are involved in the activation of the plant steroid receptor BRI1. Dev. Cell 8, 855–865.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Goshe, M.B., Soderblom, E.K., Phinney, B.S., Kuchar, J.A., Li, J., Asami, T., Yoshida, S., Huber, S.C., and Clouse, S.D. (2005b). Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROIDINSENSITIVE1 receptor kinase. Plant Cell 17, 1685–1703.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Kota, U., He, K., Blackburn, K., Li, J., Goshe, M.B., Huber, S.C., and Clouse, S.D. (2008). Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220–235.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Z., Meng, P., Zhang, X., Ren, D., and Yang, S. (2011). BON1 interacts with the protein kinases BIR1 and BAK1 in modulation of temperature-dependent plant growth and cell death in Arabidopsis. Plant J. 67, 1081–1093.

    Article  PubMed  CAS  Google Scholar 

  • Whippo, C.W., and Hangarter, R.P. (2005). A brassinosteroidhypersensitive mutant of BAK1 indicates that a convergence of photomorphogenic and hormonal signaling modulates phototropism. Plant Physiol. 139, 448–457.

    Article  PubMed  CAS  Google Scholar 

  • Ye, H., Li, L., and Yin, Y. (2011). Recent advances in the Regulation of brassinosteroid Signaling and biosynthesis pathways. J. Integ. Plant Biol. 53, 455–468.

    Article  CAS  Google Scholar 

  • Yun, H.S., Bae, Y.H., Lee, Y.J., Chang, S.C., Kim, S.K., Li, J., and Nam, K.H. (2009). Analysis of phosphorylation of the BRI1/BAK1 complex in Arabidopsis reveals amino acid residues critical for receptor formation and activation of BR signaling. Mol. Cell 27, 183–190.

    Article  CAS  Google Scholar 

  • Zhang, X.S., Choi, J.H., Heinz, J., and Chetty, C.S. (2006). Domainspecific positive selection contributes to the evolution of Arabidopsis leucine-rich repeat receptor-like kinase (LRR-RLK) genes. J. Mol. Evol. 63, 612–621.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Li, W., Xiang, T., Liu, Z., Laluk, K., Ding, X., Zou, Y., Gao, M., Zhang, Z., Chen, S., et al. (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290–301.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, D.Z., Wang, G.F., Speal, B., and Ma, H. (2002). The EXCESS MICROSPOROCYTES 1 gene encodes a putative leucine-rich repeat receptor protein kinase that controls somatic and reproductive cell fates in the Arabidopsis anther. Gene Dev. 16, 2021–2031.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428, 764–767.

    Article  PubMed  CAS  Google Scholar 

  • Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D.G., Boller, T., and Felix, G. (2006). Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125, 749–760.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Hee Nam.

About this article

Cite this article

Kim, B.H., Kim, S.Y. & Nam, K.H. Assessing the diverse functions of BAK1 and its homologs in arabidopsis, beyond BR signaling and PTI responses. Mol Cells 35, 7–16 (2013). https://doi.org/10.1007/s10059-013-2255-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10059-013-2255-3

Keywords

Navigation