Advertisement

Molecules and Cells

, Volume 36, Issue 6, pp 548–555 | Cite as

SMURF1 Plays a role in EGF-induced breast cancer cell migration and invasion

  • Arang Kwon
  • Hye-Lim Lee
  • Kyung Mi Woo
  • Hyun-Mo Ryoo
  • Jeong-Hwa Baek
Research Article

Abstract

Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.

Keywords

breast cancer EGF invasion migration SMURF1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asanuma, K., Yanagida-Asanuma, E., Faul, C., Tomino, Y., Kim, K., and Mundel, P. (2006). Synaptopodin orchestrates actin organization and cell motility via regulation of RhoA signalling. Nat. Cell Biol. 8, 485–491.PubMedCrossRefGoogle Scholar
  2. Balz, L.M., Bartkowiak, K., Andreas, A., Pantel, K., Niggemann, B., Zanker, K.S., Brandt, B.H., and Dittmar, T. (2012). The interplay of HER2/HER3/PI3K and EGFR/HER2/PLC-gamma1 signalling in breast cancer cell migration and dissemination. J. Pathol. 227, 234–244.PubMedCrossRefGoogle Scholar
  3. Barr, S., Thomson, S., Buck, E., Russo, S., Petti, F., Sujka-Kwok, I., Eyzaguirre, A., Rosenfeld-Franklin, M., Gibson, N.W., Miglarese, M., et al. (2008). Bypassing cellular EGF receptor dependence through epithelial-to-mesenchymal-like transitions. Clin. Exp. Metastasis. 25, 685–693.PubMedCentralPubMedCrossRefGoogle Scholar
  4. Brandt, B.H., Roetger, A., Dittmar, T., Nikolai, G., Seeling, M., Merschjann, A., Nofer, J.R., Dehmer-Moller, G., Junker, R., Assmann, G., et al. (1999). c-erbB-2/EGFR as dominant heterodimerization partners determine a motogenic phenotype in human breast cancer cells. FASEB J. 13, 1939–1949.PubMedGoogle Scholar
  5. Cardoso, A.P., Pinto, M.L., Pinto, A.T., Oliveira, M.I., Pinto, M.T., Goncalves, R., Relvas, J.B., Figueiredo, C., Seruca, R., Mantovani, A., et al. (2013). Macrophages stimulate gastric and colorectal cancer invasion through EGFR Y, c-Src, Erk1/2 and Akt phosphorylation and small GTPase activity. Oncogene [Epub ahead of print] doi: 10.1038/onc.2013.154Google Scholar
  6. Citri, A., and Yarden, Y. (2006). EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell. Biol. 7, 505–516.PubMedCrossRefGoogle Scholar
  7. De Luca, A., Carotenuto, A., Rachiglio, A., Gallo, M., Maiello, M.R., Aldinucci, D., Pinto, A., and Normanno, N. (2008). The role of the EGFR signaling in tumor microenvironment. J. Cell. Physiol. 214, 559–567.PubMedCrossRefGoogle Scholar
  8. Dittmar, T., Husemann, A., Schewe, Y., Nofer, J.R., Niggemann, B., Zanker, K.S., and Brandt, B.H. (2002). Induction of cancer cell migration by epidermal growth factor is initiated by specific phosphorylation of tyrosine 1248 of c-erbB-2 receptor via EGFR. FASEB J. 16, 1823–1825.PubMedGoogle Scholar
  9. Du, W.W., Yang, B.B., Shatseva, T.A., Yang, B.L., Deng, Z., Shan, S.W., Lee, D.Y., Seth, A., and Yee, A.J. (2010). Versican G3 promotes mouse mammary tumor cell growth, migration, and metastasis by influencing EGF receptor signaling. PLoS One 5, e13828.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Eccles, S.A. (2001). The role of c-erbB-2/HER2/neu in breast cancer progression and metastasis. J. Mammary Gland Biol. Neoplasia 6, 393–406.PubMedCrossRefGoogle Scholar
  11. Fidler, I.J. (2003). The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat. Rev. Cancer 3, 453–458.PubMedCrossRefGoogle Scholar
  12. Fukunaga, E., Inoue, Y., Komiya, S., Horiguchi, K., Goto, K., Saitoh, M., Miyazawa, K., Koinuma, D., Hanyu, A., and Imamura, T. (2008). Smurf2 induces ubiquitin-dependent degradation of Smurf1 to prevent migration of breast cancer cells. J. Biol. Chem. 283, 35660–35667.PubMedCrossRefGoogle Scholar
  13. Giltnane, J.M., Moeder, C.B., Camp, R.L., and Rimm, D.L. (2009). Quantitative multiplexed analysis of ErbB family coexpression for primary breast cancer prognosis in a large retrospective cohort. Cancer 115, 2400–2409.PubMedCentralPubMedCrossRefGoogle Scholar
  14. Gril, B., Palmieri, D., Bronder, J.L., Herring, J.M., Vega-Valle, E., Feigenbaum, L., Liewehr, D.J., Steinberg, S.M., Merino, M.J., Rubin, S.D., et al. (2008). Effect of lapatinib on the outgrowth of metastatic breast cancer cells to the brain. J. Natl. Cancer Inst. 100, 1092–1103.PubMedCrossRefGoogle Scholar
  15. Han, J., Li, L., Hu, J., Yu, L., Zheng, Y., Guo, J., Zheng, X., Yi, P., and Zhou, Y. (2010). Epidermal growth factor stimulates human trophoblast cell migration through Rho A and Rho C activation. Endocrinology 151, 1732–1742.PubMedCrossRefGoogle Scholar
  16. Hynes, N.E., and Lane, H.A. (2005). ERBB receptors and cancer: the complexity of targeted inhibitors. Nat. Rev. Cancer 5, 341–354.PubMedCrossRefGoogle Scholar
  17. Jemal, A., Siegel, R., Ward, E., Hao, Y., Xu, J., Murray, T., and Thun, M.J. (2008). Cancer statistics, 2008. CA Cancer J. Clin. 58, 71–96.PubMedCrossRefGoogle Scholar
  18. Jin, Y.H., Jeon, E.J., Li, Q.L., Lee, Y.H., Choi, J.K., Kim, W.J., Lee, K.Y., and Bae, S.C. (2004). Transforming growth factor-beta stimulates p300-dependent RUNX3 acetylation, which inhibits ubiquitination-mediated degradation. J. Biol. Chem. 279, 29409–29417.PubMedCrossRefGoogle Scholar
  19. Jun, J.H., Yoon, W.J., Seo, S.B., Woo, K.M., Kim, G.S., Ryoo, H.M., and Baek, J.H. (2010). BMP2-activated Erk/MAP kinase stabilizes Runx2 by increasing p300 levels and histone acetyltransferase activity. J. Biol. Chem. 285, 36410–36419.PubMedCrossRefGoogle Scholar
  20. Klapper, L.N., Kirschbaum, M.H., Sela, M., and Yarden, Y. (2000). Biochemical and clinical implications of the ErbB/HER signaling network of growth factor receptors. Adv. Cancer Res. 77, 25–79.PubMedCrossRefGoogle Scholar
  21. Kusama, T., Mukai, M., Endo, H., Ishikawa, O., Tatsuta, M., Nakamura, H., and Inoue, M. (2006). Inactivation of Rho GTPases by p190 RhoGAP reduces human pancreatic cancer cell invasion and metastasis. Cancer Sci. 97, 848–853.PubMedCrossRefGoogle Scholar
  22. Kwei, K.A., Shain, A.H., Bair, R., Montgomery, K., Karikari, C.A., van de Rijn, M., Hidalgo, M., Maitra, A., Bashyam, M.D., and Pollack, J.R. (2011). SMURF1 amplification promotes invasiveness in pancreatic cancer. PLoS One 6, e23924.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Lee, H.L., Yi, T., Baek, K., Kwon, A., Hwang, H.R., Qadir, A.S., Park, H.J., Woo, K.M., Ryoo, H.M., Kim, G.S., et al. (2013). Tumor necrosis factor-alpha enhances the transcription of Smad ubiquitination regulatory factor 1 in an activating protein-1- and Runx2-dependent manner. J. Cell. Physiol. 228, 1076–1086.PubMedCrossRefGoogle Scholar
  24. Lo, H.W., Hsu, S.C., and Hung, M.C. (2006). EGFR signaling pathway in breast cancers: from traditional signal transduction to direct nuclear translocalization. Breast Cancer Res. Treat. 95, 211–218.PubMedCrossRefGoogle Scholar
  25. MacDonald, I.C., Groom, A.C., and Chambers, A.F. (2002). Cancer spread and micrometastasis development: quantitative approaches for in vivo models. Bioessays 24, 885–893.PubMedCrossRefGoogle Scholar
  26. Miettinen, P.J., Ebner, R., Lopez, A.R., and Derynck, R. (1994). TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J. Cell Biol. 127, 2021–2036.PubMedCrossRefGoogle Scholar
  27. Molli, P.R., Adam, L., and Kumar, R. (2008). Therapeutic IMC-C225 antibody inhibits breast cancer cell invasiveness via Vav2-depen-dent activation of RhoA GTPase. Clin. Cancer Res. 14, 6161–6170.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Muller, T., Bain, G., Wang, X., and Papkoff, J. (2002). Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp. Cell. Res. 280, 119–133.PubMedCrossRefGoogle Scholar
  29. Nannuru, K.C., and Singh, R.K. (2010). Tumor-stromal interactions in bone metastasis. Curr. Osteoporos. Rep. 8, 105–113.PubMedCrossRefGoogle Scholar
  30. Nie, F., Yang, J., Wen, S., An, Y.L., Ding, J., Ju, S.H., Zhao, Z., Chen, H.J., Peng, X.G., Wong, S.T., et al. (2012). Involvement of epidermal growth factor receptor overexpression in the promotion of breast cancer brain metastasis. Cancer 118, 5198–5209.PubMedCrossRefGoogle Scholar
  31. Olayioye, M.A., Neve, R.M., Lane, H.A., and Hynes, N.E. (2000). The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J. 19, 3159–3167.PubMedCrossRefGoogle Scholar
  32. Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H.R., Zhang, Y., and Wrana, J.L. (2005). Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 307, 1603–1609.PubMedCrossRefGoogle Scholar
  33. Price, J.T., Wilson, H.M., and Haites, N.E. (1996). Epidermal growth factor (EGF) increases the in vitro invasion, motility and adhesion interactions of the primary renal carcinoma cell line, A704. Eur. J. Cancer 32A, 1977–1982.PubMedCrossRefGoogle Scholar
  34. Raftopoulou, M., and Hall, A. (2004). Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23–32.PubMedCrossRefGoogle Scholar
  35. Ridley, A.J., Schwartz, M.A., Burridge, K., Firtel, R.A., Ginsberg, M.H., Borisy, G., Parsons, J.T., and Horwitz, A.R. (2003). Cell migration: integrating signals from front to back. Science 302, 1704–1709.PubMedCrossRefGoogle Scholar
  36. Sahai, E., Garcia-Medina, R., Pouyssegur, J., and Vial, E. (2007). Smurf1 regulates tumor cell plasticity and motility through degradation of RhoA leading to localized inhibition of contractility. J. Cell Biol. 176, 35–42.PubMedCrossRefGoogle Scholar
  37. Sanchez, N.S., and Barnett, J.V. (2012). TGFbeta and BMP-2 regulate epicardial cell invasion via TGFbetaR3 activation of the Par6/Smurf1/RhoA pathway. Cell. Signal. 24, 539–548.PubMedCentralPubMedCrossRefGoogle Scholar
  38. Shibata, T., Kawano, T., Nagayasu, H., Okumura, K., Arisue, M., Hamada, J., Takeichi, N., and Hosokawa, M. (1996). Enhancing effects of epidermal growth factor on human squamous cell carcinoma motility and matrix degradation but not growth. Tumour Biol. 17, 168–175.PubMedCrossRefGoogle Scholar
  39. Solomayer, E.F., Diel, I.J., Meyberg, G.C., Gollan, C., and Bastert, G. (2000). Metastatic breast cancer: clinical course, prognosis and therapy related to the first site of metastasis. Breast Cancer Res. Treat. 59, 271–278.PubMedCrossRefGoogle Scholar
  40. Suzuki, A., Shibata, T., Shimada, Y., Murakami, Y., Horii, A., Shiratori, K., Hirohashi, S., Inazawa, J., and Imoto, I. (2008). Identification of SMURF1 as a possible target for 7q21.3–22.1 amplification detected in a pancreatic cancer cell line by in-house array-based comparative genomic hybridization. Cancer Sci. 99, 986–994.PubMedCrossRefGoogle Scholar
  41. Townsend, T.A., Wrana, J.L., Davis, G.E., and Barnett, J.V. (2008). Transforming growth factor-beta-stimulated endocardial cell transformation is dependent on Par6c regulation of RhoA. J. Biol. Chem. 283, 13834–13841.PubMedCrossRefGoogle Scholar
  42. Vaidya, R.J., Ray, R.M., and Johnson, L.R. (2005). MEK1 restores migration of polyamine-depleted cells by retention and activation of Rac1 in the cytoplasm. Am. J. Physiol. Cell Physiol. 288, C350–359.PubMedCrossRefGoogle Scholar
  43. Valles, A.M., Boyer, B., Badet, J., Tucker, G.C., Barritault, D., and Thiery, J.P. (1990). Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc. Natl. Acad. Sci. USA 87, 1124–1128.PubMedCrossRefGoogle Scholar
  44. Wang, H.R., Zhang, Y., Ozdamar, B., Ogunjimi, A.A., Alexandrova, E., Thomsen, G.H., and Wrana, J.L. (2003). Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779.PubMedCrossRefGoogle Scholar
  45. Worthylake, R.A., and Burridge, K. (2003). RhoA and ROCK promote migration by limiting membrane protrusions. J. Biol. Chem. 278, 13578–13584.PubMedCrossRefGoogle Scholar
  46. Yang, S., and Kim, H.M. (2012). The RhoA-ROCK-PTEN pathway as a molecular switch for anchorage dependent cell behavior. Biomaterials 33, 2902–2915.PubMedCrossRefGoogle Scholar
  47. Yang, X., Zhu, M.J., Sreejayan, N., Ren, J., and Du, M. (2005). Angiotensin II promotes smooth muscle cell proliferation and migration through release of heparin-binding epidermal growth factor and activation of EGF-receptor pathway. Mol. Cells 20, 263–270.PubMedCrossRefGoogle Scholar
  48. Zhu, H., Kavsak, P., Abdollah, S., Wrana, J.L., and Thomsen, G.H. (1999). A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature 400, 687–693.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Arang Kwon
    • 1
  • Hye-Lim Lee
    • 1
  • Kyung Mi Woo
    • 1
  • Hyun-Mo Ryoo
    • 1
  • Jeong-Hwa Baek
    • 1
  1. 1.Department of Molecular Genetics, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations