Molecules and Cells

, Volume 36, Issue 4, pp 355–361 | Cite as

Enzymatic synthesis of apigenin glucosides by glucosyltransferase (YjiC) from Bacillus licheniformis DSM 13

  • Rit Bahadur Gurung
  • Eun-Hee Kim
  • Tae-Jin Oh
  • Jae Kyung Sohng
Research Article

Abstract

Apigenin, a member of the flavone subclass of flavonoids, has long been considered to have various biological activities. Its glucosides, in particular, have been reported to have higher water solubility, increased chemical stability, and enhanced biological activities. Here, the synthesis of apigenin glucosides by the in vitro glucosylation reaction was successfully performed using a UDP-glucosyltransferase YjiC, from Bacillus licheniformis DSM 13. The glucosylation has been confirmed at the phenolic groups of C-4′ and C-7 positions ensuing apigenin 4′-O-glucoside, apigenin 7-O-glucoside and apigenin 4′,7-O-diglucoside as the products leaving the C-5 position unglucosylated. The position of glucosylation and the chemical structures of glucosides were elucidated by liquid chromatography/mass spectroscopy and nuclear magnetic resonance spectroscopy. The parameters such as pH, UDP glucose concentration and time of incubation were also analyzed during this study.

Keywords

apigenin enzymatic synthesis glucosides UDP-glucosyltransferase YjiC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, P.K., and Bansal, M.C. (1989). Flavonoid glycosides. In Carbon-13 NMR of Flavonoids, P.K. Agrawal, ed. (Amsterdam, Oxford, New York, Tokyo: Elsevier), pp. 283–364.CrossRefGoogle Scholar
  2. Akingbala, J.O. (1991). Effect of processing on flavonoids in Millet (Pennisetum americanum) flour. Cereal Chem. 68, 180–183.Google Scholar
  3. Breton, C., Fournel-Gigleux, S., and Palcic, M.M. (2012). Recent structures, evolution and mechanisms of glycosyltransferases. Curr. Opin. Struct. Biol. 22, 540–549.PubMedCrossRefGoogle Scholar
  4. Campbell, J.A., Davies, G.J., Bulone, V., and Henrissat, B. (1997). A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem. J. 326, 929–939.PubMedGoogle Scholar
  5. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. (2009). The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, 233–238.CrossRefGoogle Scholar
  6. Choo, C.Y., Sulong, N.Y., Man, F., and Wong, T.W. (2012). Vitexin and isovitexin from the leaves of Ficus deltoidea with in-vivo á-glucosidase inhibition. J. Ethnopharmacol. 1142, 776–781.PubMedCrossRefGoogle Scholar
  7. Desmet, T., Soetaert, W., Bojarová, P., Kren, V., Dijkhuizen, L., Eastwick-Field, V., and Schiller, A. (2012) enzymatic glycosylation of small molecules: challenging substrates require tailored catalysts. Chemistry 18, 10786–10801.PubMedCrossRefGoogle Scholar
  8. Erb, A., Weiss, H., Härle, J., and Bechthold, A. (2009). A bacterial glycosyltransferase gene toolbox: generation and applications. Phytochemistry 70, 1812–1821.PubMedCrossRefGoogle Scholar
  9. Ersoz, T., Harput, U. S., Saracoglu, I., and Calis, I. (2002). Phenolic compounds from Scutellaria pontica. Turk. J. Chem. 26, 581–588.Google Scholar
  10. Essokne, R.S., Grayer, R.J., Porter, E., Kite, G.C., Simmonds, M.S. J., and Jury, S.L. (2012). Flavonoids as chemosystematic markers for the genus Adenocarpus. Biochem. Syst. Ecol. 42, 49–52.CrossRefGoogle Scholar
  11. Gupta, S., Afaq, F., and Mukhtar, H. (2002). Involvement of nuclear factor kappa B, Bax and Bcl2 in induction of cell cycle arrest and apoptosis by apigenin in human prostate carcinoma cells. Oncogene 21, 3727–3738.PubMedCrossRefGoogle Scholar
  12. Ha, S.K., Lee, P., Park, J.A., Oh, H.R., Lee, S.Y., Park, J.H., Lee, E.H., Ryu, J.H., Lee, K.R., and Kim, S.Y. (2008). Apigenin inhibits the production of NO and PGE2 in microglia and inhibits neuronal cell death in a middle cerebral artery occlusion-induced focal ischemia mice model. Neurochem. Int. 52, 878–886.PubMedCrossRefGoogle Scholar
  13. Harle, J., and Bechthold, A. (2009). The power of glycosyltransferases to generate bioactive natural compounds. In Methods Enzymol. (Complex Enzymes in Microbial Natural Product Biosynthesis, Part A: Overview Articles and Peptides) D.A. Hopwood, ed. (USA, Academic Press), 458, pp. 309–333.CrossRefGoogle Scholar
  14. Hattori, S., and Matsuda, H. (1952). Rhoifolin, a new flavone glycoside, isolated from the leaves of Rhus succedanea. Arch. Biochem. Biophys. 37, 85–89.CrossRefGoogle Scholar
  15. Havsteen, B. (1983). Flavonoids, a class of natural products of high pharmacological potency. Biochem. Pharmacol. 32, 1141–1148.PubMedCrossRefGoogle Scholar
  16. Ielpo, M.T., Basile, A., Miranda, R., Moscatiello, V., Nappo, C., Sorbo, S., Laghi E., Ricciardi, M.M., Ricciardi, L., and Vuotto, M.L. (2000). Immunopharmacological properties of flavonoids. Fitoterapia 71, S101–S109.PubMedCrossRefGoogle Scholar
  17. Jäger, A.K., and Saaby, L. (2011). Flavonoids and the CNS. Molecules 16, 1471–1485.PubMedCrossRefGoogle Scholar
  18. Jones, P., and Vogt, T. (2001). Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213, 164–174.PubMedCrossRefGoogle Scholar
  19. Ko, J.H., Kim, B.G., and Ahn, J.H. (2006). Glycosylation of flavonoids with a glycosyltransferase from Bacillus cereus. FEMS Microbiol. Lett. 258, 263–268.CrossRefGoogle Scholar
  20. Kobayashi, T., Nakata, T., and Kusumaki, T. (2002). Effect of flavonoids on cell cycle progression in prostate cancer cells. Cancer Lett. 176, 17–23.PubMedCrossRefGoogle Scholar
  21. Lim, E.K., and Bowles, D.J. (2004). A class of plant glycosyltransferases involved in cellular homeostasis. EMBO J. 23, 2915–2922.PubMedCrossRefGoogle Scholar
  22. Lin, J.K., Chen, Y.C., Huang, Y.T., and Lin-Shiau, S.Y. (1997). Suppression of protein kinase C and nuclear oncogene expression as possible molecular mechanisms of cancer chemoprevention by apigenin and curcumin. J. Cell. Biochem. 67, 39–48.CrossRefGoogle Scholar
  23. Lin, Y.L., Kuo, Y.H., and Shiao, M.S. (2000). Flavonoid glycosides from Terminalia catappa L. J. Chinese Chem. Soc. 47, 253–256.Google Scholar
  24. Mackenzie, P.I., Owens, I.S., Burchell, B., Bock, K.W., Bairoch, A., Belanger, A., Fournel-Gigleux, S., Green, M., Hum, D.W., Iyanagi, T., et al. (1997). The UDP-glycosyltransferase gene superfamily: Recommended nomenclature update based on evolutionary divergence. Pharmacogenetics 7, 255–269.PubMedCrossRefGoogle Scholar
  25. Makino, T., Shimizu, R., Kanemaru, M., Suzuki, Y., Moriwaki, M., and Mizukami, H. (2009). Enzymatically modified isoquercitrin, á-oligoglucosyl quercetin 3-O-glucoside, is absorbed more easily than other quercetin glycosides or aglycone after oral administration in rats. Biol. Pharm. Bull. 32, 2034–2040.PubMedCrossRefGoogle Scholar
  26. Manach, C., Scalbert, A., Morand, C., Remesy, C., and Jimenez, L. (2004). Polyphenols: food sources and bioavailability. Am. J. Clin. Nutr. 79, 727–747.PubMedGoogle Scholar
  27. Markham, K.R., and Geiger, H. (1993). 1H nuclear magnetic resonance spectroscopy of flavonoids and their glycosides in hexadeuterodimethylsulfoxide. In the Flavonoids, Advances in Research Since 1986, J.B. Harborne, ed. (London, UK: Chapman & Hall), pp. 441–497.Google Scholar
  28. Merfort, I., Heilmann, J., Hagedorn-Leweke, U., and Lippold, B.C. (1994). In vivo skin penetration studies of chamomile flavones. Pharmazie 49, 509–511.PubMedGoogle Scholar
  29. Meyer, H., Bolarinwa, A., Wolfram, G., and Linseisen, J. (2006). Bioavailability of apigenin from apiin-rich parsley in humans. Ann. Nutr. Metab. 50, 167–172.PubMedCrossRefGoogle Scholar
  30. Middleton, Jr. E. (1998). Effect of plant flavonoids on immune and inflammatory cell function. Adv. Exp. Med. Biol. 439,175–182.PubMedCrossRefGoogle Scholar
  31. Moussaoui, F., Zellagui, A., Segueni, N., Touil, A., and Rhouati, S. (2010). Flavonoid constituents from Algerian Launaea resedifolia (O.K.) and their antimicrobial activity. Rec. Nat. Prod. 4, 91–95.Google Scholar
  32. Myhrstad, M.C., Carlsen, H., Nordstrom, O., Blomhoff, R., and Moskaug, J.O. (2002). Flavonoids increase the intracellular glutathione level by transactivation of the gamma-glutamylcysteine synthetase catalytical subunit promoter. Free Radic. Biol. Med. 32, 386–393.PubMedCrossRefGoogle Scholar
  33. Nakazaki, E., Soninkhishig, T., Han, J., and Isoda, H. (2013). Proteomic study of granulocytic differentiation induced by apigenin 7-glucoside in human promyelocytic leukemia HL-60 cells. Eur. J. Nutr. 52, 25–35.PubMedCrossRefGoogle Scholar
  34. Pandey, R.P., Li, T.F., Kim, E.H., Yamaguchi, T., Park, Y.I., Kim, J.S., and Sohng, J.K. (2013). Enzymatic synthesis of novel phloretin glucosides. Appl. Environ. Microbiol. 79, 3516–3521PubMedCrossRefGoogle Scholar
  35. Patel, D., Shukla, S., and Gupta, S. (2007). Apigenin and cancer chemoprevention: Progress, potential and promise. Int. J. Oncol. 30, 233–245.PubMedGoogle Scholar
  36. Rajbhandari, A., and Roberts, M.F. (1983). The flavonoids of Stevia rebaudiana. J. Nat. Prod. 46, 194–195.CrossRefGoogle Scholar
  37. Rice-Evans, C.A., Miller, N.J., and Paganga, G. (1996). Structureantioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 20, 933–956.PubMedCrossRefGoogle Scholar
  38. Richman, A., Swanson, A., Humphrey, T., Chapman, R., McGarvey, B., Pocs, R., and Brandle, J. (2005). Functional genomics uncovers three glucosyltransferases involved in the synthesis of the major sweet glucosides of Stevia rebaudiana. Plant J. 41, 56–67.PubMedCrossRefGoogle Scholar
  39. Ross, J.A., and Kasum, C.M. (2002). Dietary flavonoids: bioavailabilty, metabolic effects and safety. Annu. Rev. Nutr. 22, 19–34.PubMedCrossRefGoogle Scholar
  40. Segaert, S., Courtois, S., Garmyn, M., Degreef, H., and Bouillon, R. (2000). The flavonoid apigenin suppresses vitamin D receptor expression and vitamin D responsiveness in normal human keratinocytes. Biochem. Biophys. Res. Commun. 268, 237–241.PubMedCrossRefGoogle Scholar
  41. She, G., Guo, Z., Lv, H., and She, D. (2009). New flavonoid glycosides from Elsholtzia rugulosa Hemsl. Molecules 14, 4190–4196.PubMedCrossRefGoogle Scholar
  42. Shimoda, K., Otsuka, T., Morimoto, Y., Hamada, H., and Hamada, H. (2007). Glycosylation and malonylation of quercitin, epicatechin, and catechin by cultured plant cells. Chem. Lett. 36, 1292–1293.CrossRefGoogle Scholar
  43. Shukla, S., and Gupta, S. (2010). Apigenin: a promising molecule for cancer prevention. Pharm. Res. 27, 962–978.PubMedCrossRefGoogle Scholar
  44. Singh, J.P., Selvendiran, K., Banu, S.M., Padmavathi, R., and Sakthisekaran, D. (2004). Protective role of apigenin on the status of lipid peroxidation and antioxidant defense against hepatocarcinogenesis in Wistar albino rats. Phytomedicine 11, 309–314.PubMedCrossRefGoogle Scholar
  45. Surh, Y.J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768–780.PubMedCrossRefGoogle Scholar
  46. Švehlíková, V., Bennett, R.N., Mellon, F.A., Needs, P.W., Piacente, S., Kroon, P.A., and Bao, Y. (2004). Isolation, identification and stability of acylated derivatives of apigenin 7-O-glucoside from chamomile (Chamomilla recutita [L.] Rauschert). Phytochemistry 65, 2323–2332.PubMedCrossRefGoogle Scholar
  47. Terasaka, K., Misutani, Y., Nagatsu, A., and Mizukami, H. (2012). In situ UDP-glucose regeneration unravels diverse functions of plant secondary product glycosyltransferases. FEBS Lett. 586, 4344–4350.PubMedCrossRefGoogle Scholar
  48. Toker G., Küpeli, E., Memisoglu, M., and Yesilada, E. (2004). Flavonoids with antinociceptive and anti-inflammatory activities from the leaves of Tilia argentea (silver linden). J. Ethnopharmacol. 95, 393–397.PubMedCrossRefGoogle Scholar
  49. Tsolmon, S., Nakazaki, E., Han, J., and Isoda, H. (2011). Apigetrin induces erythroid differentiation of human leukemia cells K562: proteomics approach. Mol. Nutr. Food Res. 55, S93–S102.PubMedCrossRefGoogle Scholar
  50. Wang, H.K., Xia, Y., Yang, Z.Y., Natschke, S.L., and Lee, K.H. (1998). Recent advances in the discovery and development of flavonoids and their analogues as antitumor and anti-HIV agents. Adv. Exp. Med. Biol. 439, 191–225.PubMedCrossRefGoogle Scholar
  51. Wei, H., Tye, L., Bresnick, E., and Birt, D.F. (1990). Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice. Cancer Res. 50, 499–502.PubMedGoogle Scholar
  52. Weymouth-Wilson, A.C. (1997). The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14, 99–110.PubMedCrossRefGoogle Scholar
  53. Wu, C.Z., Jang, J.H., Woo, M., Ahn, J.S., Kim, J.S., and Hong, Y.S. (2012). Enzymatic glycosylation of non-benzoquinone geldanamycin analogs via Bacillus UDP-glycosyltransferase. Appl. Environ. Microbiol. 78, 7680–7686.PubMedCrossRefGoogle Scholar
  54. Yassa, N., Saeidnia, S., Pirouzi, R., Akbaripour, M., and Shafiee, A. (2007). Three phenolic glycosides and immunological properties of Achillea millefolium from Iran, population of Golestan. Daru 15, 49–52.Google Scholar
  55. Zhang, Y., Jiao, J., Liu, C., Wu, X., and Zhang, Y. (2008). Isolation and purification of four flavone C-glycosides from antioxidant bamboo leaves by macroporous resin column chromatography and preparative high-performance liquid chromatography. Food Chem. 107, 1326–1336.Google Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Rit Bahadur Gurung
    • 1
  • Eun-Hee Kim
    • 2
  • Tae-Jin Oh
    • 1
  • Jae Kyung Sohng
    • 1
  1. 1.Department of Pharmaceutical Engineering, Institute of Biomolecule ReconstructionSun Moon UniversityAsanKorea
  2. 2.Division of Magnetic ResonanceKorea Basic Science InstituteOchangKorea

Personalised recommendations