Advertisement

Molecules and Cells

, Volume 36, Issue 2, pp 145–150 | Cite as

Establishment of a bone-specific col10a1:GFP transgenic zebrafish

  • Yong-Il Kim
  • Suman Lee
  • Seung-Hyun Jung
  • Hyun-Taek Kim
  • Jung-Hwa Choi
  • Mi-Sun Lee
  • Kwan-Hee You
  • Sang-Yeob Yeo
  • Kyeong-Won Yoo
  • SeongAe Kwak
  • Joon No Lee
  • Raekil Park
  • Seong-Kyu ChoeEmail author
  • Cheol-Hee KimEmail author
Research Article

Abstract

During skeletal development, both osteogenic and chondrogenic programs are initiated from multipotent mesenchymal cells, requiring a number of signaling molecules, transcription factors, and downstream effectors to orchestrate the sophisticated process. Col10a1, an important downstream effector gene, has been identified as a marker for maturing chondrocytes in higher vertebrates, such as mammals and birds. In zebrafish, this gene has been shown to be expressed in both osteoblasts and chondrocytes, but no study has reported its role in osteoblast development. To initially delineate the osteogenic program from chondrogenic lineage development, we used the zebrafish col10a1 promoter to establish a transgenic zebrafish expressing a GFP reporter specifically in osteoblast-specific bone structures that do not involve cartilaginous programs. A construct harboring a ∼2.2-kb promoter region was found to be sufficient to drive the reporter gene in osteoblast-specific bone structures within the endogenous col10a1 expression domain, confirming that separable cis-acting elements exist for distinct cell type-specific expression of col10a1 during zebrafish skeletal development. The ∼2.2-kb col10a1:GFP transgenic zebrafish marking only bone structures derived from osteoblasts will undoubtedly be an invaluable tool for identifying and characterizing molecular events driving osteoblast development in zebrafish, which may further provide a differential mechanism where col10a1 is involved in the development of chondrocytes undergoing maturation in other vertebrate systems.

Keywords

bone col10a1 osteoblast model system transgenic zebrafish 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beier, F., Lammi, M.J., Bertling, W., and von der Mark, K. (1996). Transcriptional regulation of the human type X collagen gene expression. Ann. N Y Acad. Sci. 785, 209–211.PubMedCrossRefGoogle Scholar
  2. Beier, F., Vornehm, S., Poschl, E., von der Mark, K., and Lammi, M.J. (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J. Cell. Biochem. 66, 210–218.PubMedCrossRefGoogle Scholar
  3. Choe, S.K., Lu, P., Nakamura, M., Lee, J., and Sagerstrom, C.G. (2009). Meis cofactors control HDAC and CBP accessibility at Hox-regulated promoters during zebrafish embryogenesis. Dev. Cell 17, 561–567.PubMedCrossRefGoogle Scholar
  4. Cubbage, C.C., and Mabee, P.M. (1996). Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae). J. Morphol. 229, 121–160.CrossRefGoogle Scholar
  5. Dourado, G., and LuValle, P. (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J. Cell. Biochem. 70, 507–516.PubMedCrossRefGoogle Scholar
  6. Drissi, M.H., Li, X., Sheu, T.J., Zuscik, M.J., Schwarz, E.M., Puzas, J.E., Rosier, R.N., and O’Keefe, R.J. (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J. Cell. Biochem. 90, 1287–1298.PubMedCrossRefGoogle Scholar
  7. Eames, B.F., Amores, A., Yan, Y.L., and Postlethwait, J.H. (2012). Evolution of the osteoblast: skeletogenesis in gar and zebrafish. BMC Evol. Biol. 12, 27.PubMedCrossRefGoogle Scholar
  8. Enomoto, H., Enomoto-Iwamoto, M., Iwamoto, M., Nomura, S., Himeno, M., Kitamura, Y., Kishimoto, T., and Komori, T. (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. J. Biol. Chem. 275, 8695–8702.PubMedCrossRefGoogle Scholar
  9. Hammond, C.L., and Moro, E. (2012). Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Front Endocrinol. 3, 91.CrossRefGoogle Scholar
  10. Hassan, M.Q., Javed, A., Morasso, M.I., Karlin, J., Montecino, M., van Wijnen, A.J., Stein, G.S., Stein, J.L., and Lian, J.B. (2004). Dlx3 transcriptional regulation of osteoblast differentiation: temporal recruitment of Msx2, Dlx3, and Dlx5 homeodomain proteins to chromatin of the osteocalcin gene. Mol. Cell. Biol. 24, 9248–9261.PubMedCrossRefGoogle Scholar
  11. Higashikawa, A., Saito, T., Ikeda, T., Kamekura, S., Kawamura, N., Kan, A., Oshima, Y., Ohba, S., Ogata, N., Takeshita, K., et al. (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis. Rheum. 60, 166–178.PubMedCrossRefGoogle Scholar
  12. Jacenko, O., LuValle, P.A., and Olsen, B.R. (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365, 56–61.PubMedCrossRefGoogle Scholar
  13. Jung, S.H., Kim, S., Chung, A.Y., Kim, H.T., So, J.H., Ryu, J., Park, H.C., and Kim, C.H. (2010). Visualization of myelination in GFPtransgenic zebrafish. Dev. Dyn. 239, 592–527.PubMedCrossRefGoogle Scholar
  14. Jung, S.H., Kim, H.S., Ryu, J.H., Gwak, J.W., Bae, Y.K., Kim, C.H., and Yeo, S.Y. (2012). Her4-positive population in the tectum opticum is proliferating neural precursors in the adult zebrafish brain. Mol. Cells 33, 627–632.PubMedCrossRefGoogle Scholar
  15. Kim, M.J., Kang, K.H., Kim, C.H., and Choi, S.Y. (2008). Real-time imaging of mitochondria in transgenic zebrafish expressing mitochondrially targeted GFP. Biotechniques 45, 331–334.PubMedCrossRefGoogle Scholar
  16. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev. Dyn. 203, 253–310.PubMedCrossRefGoogle Scholar
  17. Komori, T. (2010). Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 339, 189–195.PubMedCrossRefGoogle Scholar
  18. Komori, T., Yagi, H., Nomura, S., Yamaguchi, A., Sasaki, K., Deguchi, K., Shimizu, Y., Bronson, R.T., Gao, Y.H., Inada, M., et al. (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 89, 755–764.PubMedCrossRefGoogle Scholar
  19. Li, N., Felber, K., Elks, P., Croucher, P., and Roehl, H.H. (2009). Tracking gene expression during zebrafish osteoblast differentiation. Dev. Dyn. 238, 459–466.PubMedCrossRefGoogle Scholar
  20. Li, F., Lu, Y., Ding, M., Napierala, D., Abbassi, S., Chen, Y., Duan, X., Wang, S., Lee, B., and Zheng, Q. (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J. Bone Miner. Res. 26, 2899–2910.PubMedCrossRefGoogle Scholar
  21. Lieschke, G.J., and Currie, P.D. (2007). Animal models of human disease: zebrafish swim into view. Nat. Rev. Genet. 8, 353–367.PubMedCrossRefGoogle Scholar
  22. Mitchell, R.E., Huitema, L.F., Skinner, R.E., Brunt, L.H., Severn, C., Schulte-Merker, S., and Hammond, C.L. (2013). New tools for studying osteoarthritis genetics in zebrafish. Osteoarthritis Cartilage 21, 269–278.PubMedCrossRefGoogle Scholar
  23. Otto, F., Thornell, A.P., Crompton, T., Denzel, A., Gilmour, K.C., Rosewell, I.R., Stamp, G.W., Beddington, R.S., Mundlos, S., Olsen, B.R., et al. (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell 89, 765–771.PubMedCrossRefGoogle Scholar
  24. Park, H.C., Kim, C.H., Bae, Y.K., Yeo, S.Y., Kim, S.H., Hong, S.K., Shin, J., Yoo, K.W., Hibi, M., Hirano, T., et al. (2000). Analysis of upstream elements in the HuC promoter leads to the establishment of transgenic zebrafish with fluorescent neurons. Dev. Biol. 227, 279–293.PubMedCrossRefGoogle Scholar
  25. Riemer, S., Gebhard, S., Beier, F., Poschl, E., and von der Mark, K. (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J. Cell. Biochem. 86, 688–699.PubMedCrossRefGoogle Scholar
  26. Simoes, B., Conceicao, N., Viegas, C.S., Pinto, J.P., Gavaia, P.J., Hurst, L.D., Kelsh, R.N., and Cancela, M.L. (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2-alphaA2. Calcif. Tissue Int. 79, 230–244.PubMedCrossRefGoogle Scholar
  27. van der Kraan, P.M., and van den Berg, W.B. (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration?. Osteoarthritis Cartilage 20, 223–232.PubMedCrossRefGoogle Scholar
  28. Zheng, Q., Zhou, G., Morello, R., Chen, Y., Garcia-Rojas, X., and Lee, B. (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J. Cell Biol. 162, 833–842.PubMedCrossRefGoogle Scholar
  29. Zheng, Q., Keller, B., Zhou, G., Napierala, D., Chen, Y., Zabel, B., Parker, A.E., and Lee, B. (2009) Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J. Bone Miner. Res. 24, 1022–1032.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Yong-Il Kim
    • 1
    • 2
  • Suman Lee
    • 3
  • Seung-Hyun Jung
    • 1
  • Hyun-Taek Kim
    • 1
  • Jung-Hwa Choi
    • 1
  • Mi-Sun Lee
    • 1
  • Kwan-Hee You
    • 1
  • Sang-Yeob Yeo
    • 4
  • Kyeong-Won Yoo
    • 2
  • SeongAe Kwak
    • 2
  • Joon No Lee
    • 2
  • Raekil Park
    • 2
  • Seong-Kyu Choe
    • 2
    Email author
  • Cheol-Hee Kim
    • 1
    Email author
  1. 1.Department of BiologyChungnam National UniversityDaejeonKorea
  2. 2.Center for Metabolic Function Regulation, Department of Microbiology, College of MedicineWonkwang UniversityIksanKorea
  3. 3.Department of Biomedical ScienceCHA UniversitySeongnamKorea
  4. 4.Department of Biotechnology, Division of Applied Chemistry and BiotechnologyHanbat National UniversityDaejeonKorea

Personalised recommendations