Molecules and Cells

, Volume 35, Issue 6, pp 533–542 | Cite as

Comparative proteomic analysis of cysteine oxidation in colorectal cancer patients

  • Hee-Young Yang
  • Kee-Oh Chay
  • Joseph Kwon
  • Sang-Oh Kwon
  • Young-Kyu Park
  • Tae-Hoon Lee
Research Article

Abstract

Oxidative stress promotes damage to cellular proteins, lipids, membranes and DNA, and plays a key role in the development of cancer. Reactive oxygen species disrupt redox homeostasis and promote tumor formation by initiating aberrant activation of signaling pathways that lead to tumorigenesis. We used shotgun proteomics to identify proteins containing oxidation-sensitive cysteines in tissue specimens from colorectal cancer patients. We then compared the patterns of cysteine oxidation in the membrane fractions between the tumor and non-tumor tissues. Using nano-UPLC-MSE proteomics, we identified 31 proteins containing 37 oxidation-sensitive cysteines. These proteins were observed with IAM-binding cysteines in non-tumoral region more than tumoral region of CRC patients. Then using the Ingenuity pathway program, we evaluated the cellular canonical networks connecting those proteins. Within the networks, proteins with multiple connections were related with organ morphology, cellular metabolism, and various disorders. We have thus identified networks of proteins whose redox status is altered by oxidative stress, perhaps leading to changes in cellular functionality that promotes tumorigenesis.

Keywords

colorectal cancer cysteine oxidation iodoacetamide protein network shotgun proteomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, A., Bencsath, F.A., Shartava, A., Kakhniashvili, D.G., and Goodman, S.R. (2002). Preparation of irreversibly sickled cell beta-actin from normal red blood cell beta-actin. Biochemistry 41, 292–296.PubMedCrossRefGoogle Scholar
  2. Acharya, A., Das, I., Chandhok, D., and Saha, T. (2010). Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid. Med. Cell Longev. 3, 23–34.PubMedCrossRefGoogle Scholar
  3. Adachi, M., Sakamoto, H., Kawamura, R., Wang, W., Imai, K., and Shinomura, Y. (2007). Nonsteroidal anti-inflammatory drugs and oxidative stress in cancer cells. Histol. Histopathol. 22, 437–442.PubMedGoogle Scholar
  4. Behrend, L., Henderson, G., and Zwacka, R.M. (2003). Reactive oxygen species in oncogenic transformation. Biochem. Soc. Trans. 31, 1441–1444.PubMedCrossRefGoogle Scholar
  5. Brennan, J.P., Wait, R., Begum, S., Bell, J.R., Dunn, M.J., and Eaton, P. (2004). Detection and mapping of widespread intermolecular protein disulfide formation during cardiac oxidative stress using proteomics with diagonal electrophoresis. J. Biol. Chem. 279, 41352–41360.PubMedCrossRefGoogle Scholar
  6. Bulaj, G., Kortemme, T., and Goldenberg, D.P. (1998). Ionizationreactivity relationships for cysteine thiols in polypeptides. Biochemistry 37, 8965–8972.PubMedCrossRefGoogle Scholar
  7. Burdon, R.H. (1995). Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic. Biol. Med. 18, 775–794.PubMedCrossRefGoogle Scholar
  8. Burdon, R.H., Gill, V., and Alliangana, D. (1996). Hydrogen peroxide in relation to proliferation and apoptosis in BHK-21 hamster fibroblasts. Free Radic. Res. 24, 81–93.PubMedCrossRefGoogle Scholar
  9. Chang, D.K., Goel, A., Ricciardiello, L., Lee, D.H., Chang, C.L., Carethers, J.M., and Boland, C.R. (2003). Effect of H(2)O(2) on cell cycle and survival in DNA mismatch repair-deficient and — proficient cell lines. Cancer Lett. 195, 243–251.PubMedCrossRefGoogle Scholar
  10. Charles, R.L., Schroder, E., May, G., Free, P., Gaffney, P.R., Wait, R., Begum, S., Heads, R.J., and Eaton, P. (2007). Protein sulfenation as a redox sensor: proteomics studies using a novel biotinylated dimedone analogue. Mol. Cell. Proteomics 6, 1473–1484.PubMedCrossRefGoogle Scholar
  11. Chen, J.G., Yang, C.P., Cammer, M., and Horwitz, S.B. (2003). Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res. 63, 7891–7899.PubMedGoogle Scholar
  12. Choi, H., Kim, S., Mukhopadhyay, P., Cho, S., Woo, J., Storz, G., and Ryu, S.E. (2001). Structural basis of the redox switch in the OxyR transcription factor. Cell 105, 103–113.PubMedCrossRefGoogle Scholar
  13. Choi, K.S., Park, S.Y., Baek, S.H., Dey-Rao, R., Park, Y.M., Zhang, H., Ip, C., Park, E.M., Kim, Y.H., and Park, J.H. (2006). Analysis of protein redox modification by hypoxia. Prep. Biochem. Biotechnol. 36, 65–79.PubMedCrossRefGoogle Scholar
  14. Coyle, J.T., and Puttfarcken, P. (1993). Oxidative stress, glutamate, and neurodegenerative disorders. Science 262, 689–695.PubMedCrossRefGoogle Scholar
  15. Cumming, R.C., Andon, N.L., Haynes, P.A., Park, M., Fischer, W.H., and Schubert, D. (2004). Protein disulfide bond formation in the cytoplasm during oxidative stress. J. Biol. Chem. 279, 21749–21758.PubMedCrossRefGoogle Scholar
  16. Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., and Colombo, R. (2001). The actin cytoskeleton response to oxidants: from small heat shock protein phosphorylation to changes in the redox state of actin itself. Free Radic. Biol. Med. 31, 1624–1632.PubMedCrossRefGoogle Scholar
  17. Dionne, S., Levy, E., Levesque, D., and Seidman, E.G. (2010). PPARgamma ligand 15-deoxy-delta 12,14-prostaglandin J2 sensitizes human colon carcinoma cells to TWEAK-induced apoptosis. Anticancer Res. 30, 157–166.PubMedGoogle Scholar
  18. Domokos, M., Jakus, J., Szeker, K., Csizinszky, R., Csiko, G., Neogrady, Z., Csordas, A., and Galfi, P. (2010). Butyrate-induced cell death and differentiation are associated with distinct patterns of ROS in HT29-derived human colon cancer cells. Dig. Dis. Sci. 55, 920–930.PubMedCrossRefGoogle Scholar
  19. Farah, M.E., Sirotkin, V., Haarer, B., Kakhniashvili, D., and Amberg, D.C. (2011). Diverse protective roles of the actin cytoskeleton during oxidative stress. Cytoskeleton (Hoboken) 68, 340–354.CrossRefGoogle Scholar
  20. Fedorova, M., Kuleva, N., and Hoffmann, R. (2010). Identification of cysteine, methionine and tryptophan residues of actin oxidized in vivo during oxidative stress. J. Proteome Res. 9, 1598–1609.PubMedCrossRefGoogle Scholar
  21. Finkel, T. (2003). Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254.PubMedCrossRefGoogle Scholar
  22. Fu, C., Wu, C., Liu, T., Ago, T., Zhai, P., Sadoshima, J., and Li, H. (2009). Elucidation of thioredoxin target protein networks in mouse. Mol. Cell Proteomics 8, 1674–1687.PubMedCrossRefGoogle Scholar
  23. Gao, J., Liu, X., and Rigas, B. (2005). Nitric oxide-donating aspirin induces apoptosis in human colon cancer cells through induction of oxidative stress. Proc. Natl. Acad. Sci. USA 102, 17207–17212.PubMedCrossRefGoogle Scholar
  24. Gao, J., Kashfi, K., Liu, X., and Rigas, B. (2006). NO-donating aspirin induces phase II enzymes in vitro and in vivo. Carcinogenesis 27, 803–810.PubMedCrossRefGoogle Scholar
  25. Garcia-Santamarina, S., Boronat, S., Espadas, G., Ayte, J., Molina, H., and Hidalgo, E. (2011). The oxidized thiol proteome in fission yeast—optimization of an ICAT-based method to identify H2O2-oxidized proteins. J. Proteomics 74, 2476–2486.PubMedCrossRefGoogle Scholar
  26. Giardina, C., Boulares, H., and Inan, M.S. (1999). NSAIDs and butyrate sensitize a human colorectal cancer cell line to TNFalpha and Fas ligation: the role of reactive oxygen species. Biochim. Biophys. Acta 1448, 425–438.PubMedCrossRefGoogle Scholar
  27. Grillo, C., D’Ambrosio, C., Consalvi, V., Chiaraluce, R., Scaloni, A., Maceroni, M., Eufemi, M., and Altieri, F. (2007). DNA-binding activity of the ERp57 C-terminal domain is related to a redoxdependent conformational change. J. Biol. Chem. 282, 10299–10310.PubMedCrossRefGoogle Scholar
  28. Janssen-Heininger, Y.M., Mossman, B.T., Heintz, N.H., Forman, H.J., Kalyanaraman, B., Finkel, T., Stamler, J.S., Rhee, S.G., and van der Vliet, A. (2008). Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic. Biol. Med. 45, 1–17.PubMedCrossRefGoogle Scholar
  29. Kitz, K., Windischhofer, W., Leis, H.J., Huber, E., Kollroser, M., and Malle, E. (2011). 15-Deoxy-Delta12,14-prostaglandin J2 induces Cox-2 expression in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species. Free Radic. Biol. Med. 50, 854–865.PubMedCrossRefGoogle Scholar
  30. Kozoni, V., Rosenberg, T., and Rigas, B. (2007). Development of novel agents based on nitric oxide for the control of colon cancer. Acta Pharmacol. Sin. 28, 1429–1433.PubMedCrossRefGoogle Scholar
  31. Landino, L.M., Hagedorn, T.D., Kim, S.B., and Hogan, K.M. (2011). Inhibition of tubulin polymerization by hypochlorous acid and chloramines. Free Radic. Biol. Med. 50, 1000–1008.PubMedCrossRefGoogle Scholar
  32. Lee, K.W., and Lee, H.J. (2006). Biphasic effects of dietary antioxidants on oxidative stress-mediated carcinogenesis. Mech. Ageing Dev. 127, 424–431.PubMedCrossRefGoogle Scholar
  33. Leonard, S.E., and Carroll, K.S. (2011). Chemical ‘omics’ approaches for understanding protein cysteine oxidation in biology. Curr. Opin. Chem. Biol. 15, 88–102.PubMedCrossRefGoogle Scholar
  34. Mastrocola, R., Reffo, P., Penna, F., Tomasinelli, C.E., Boccuzzi, G., Baccino, F.M., Aragno, M., and Costelli, P. (2008). Muscle wasting in diabetic and in tumor-bearing rats: role of oxidative stress. Free Radic. Biol. Med. 44, 584–593.PubMedCrossRefGoogle Scholar
  35. Mates, J.M., and Sanchez-Jimenez, F.M. (2000). Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int. J. Biochem. Cell Biol. 32, 157–170.PubMedCrossRefGoogle Scholar
  36. Matsubara, K., Komatsu, S., Oka, T., and Kato, N. (2003). Vitamin B6-mediated suppression of colon tumorigenesis, cell proliferation, and angiogenesis (review). J. Nutr. Biochem. 14, 246–250.PubMedCrossRefGoogle Scholar
  37. Milzani, A., Rossi, R., Di Simplicio, P., Giustarini, D., Colombo, R., and DalleDonne, I. (2000). The oxidation produced by hydrogen peroxide on Ca-ATP-G-actin. Protein Sci. 9, 1774–1782.PubMedCrossRefGoogle Scholar
  38. Miro, A.M., Sastre-Serra, J., Pons, D.G., Valle, A., Roca, P., and Oliver, J. (2011). 17beta-Estradiol regulates oxidative stress in prostate cancer cell lines according to ERalpha/ERbeta ratio. J. Steroid Biochem. Mol. Biol. 123, 133–139.PubMedCrossRefGoogle Scholar
  39. Monaghan-Benson, E., and Burridge, K. (2009). The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species. J. Biol. Chem. 284, 25602–25611.PubMedCrossRefGoogle Scholar
  40. Nagahara, N., Matsumura, T., Okamoto, R., and Kajihara, Y. (2009). Protein cysteine modifications: (1) medical chemistry for proteomics. Curr. Med. Chem. 16, 4419–4444.PubMedCrossRefGoogle Scholar
  41. Olivieri, G., Novakovic, M., Savaskan, E., Meier, F., Baysang, G., Brockhaus, M., and Muller-Spahn, F. (2002). The effects of beta-estradiol on SHSY5Y neuroblastoma cells during heavy metal induced oxidative stress, neurotoxicity and beta-amyloid secretion. Neuroscience 113, 849–855.PubMedCrossRefGoogle Scholar
  42. Pamplona, R., Dalfo, E., Ayala, V., Bellmunt, M.J., Prat, J., Ferrer, I., and Portero-Otin, M. (2005). Proteins in human brain cortex are modified by oxidation, glycoxidation, and lipoxidation. Effects of Alzheimer disease and identification of lipoxidation targets. J. Biol. Chem. 280, 21522–21530.PubMedCrossRefGoogle Scholar
  43. Parkin, D.M. (2006). The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer 118, 3030–3044.PubMedCrossRefGoogle Scholar
  44. Pelicano, H., Carney, D., and Huang, P. (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97–110.PubMedCrossRefGoogle Scholar
  45. Phalen, T.J., Weirather, K., Deming, P.B., Anathy, V., Howe, A.K., van der Vliet, A., Jonsson, T.J., Poole, L.B., and Heintz, N.H. (2006). Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery. J. Cell Biol. 175, 779–789.PubMedCrossRefGoogle Scholar
  46. Poole, L.B., and Nelson, K.J. (2008). Discovering mechanisms of signaling-mediated cysteine oxidation. Curr. Opin. Chem. Biol. 12, 18–24.PubMedCrossRefGoogle Scholar
  47. Qin, G., Meng, X., Wang, Q., and Tian, S. (2009). Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. J. Proteome Res. 8, 2449–2462.PubMedCrossRefGoogle Scholar
  48. Rigas, B. (2007). The use of nitric oxide-donating nonsteroidal anti-inflammatory drugs in the chemoprevention of colorectal neoplasia. Curr. Opin. Gastroenterol. 23, 55–59.PubMedCrossRefGoogle Scholar
  49. Roessner, A., Kuester, D., Malfertheiner, P., and Schneider-Stock, R. (2008). Oxidative stress in ulcerative colitis-associated carcinogenesis. Pathol. Res. Pract. 204, 511–524.PubMedCrossRefGoogle Scholar
  50. Saaf, A.M., Halbleib, J.M., Chen, X., Yuen, S.T., Leung, S.Y., Nelson, W.J., and Brown, P.O. (2007). Parallels between global transcriptional programs of polarizing Caco-2 intestinal epithelial cells in vitro and gene expression programs in normal colon and colon cancer. Mol. Biol. Cell 18, 4245–4260.PubMedCrossRefGoogle Scholar
  51. Sampson, N., Koziel, R., Zenzmaier, C., Bubendorf, L., Plas, E., Jansen-Durr, P., and Berger, P. (2011). ROS signaling by NOX4 drives fibroblast-to-myofibroblast differentiation in the diseased prostatic stroma. Mol. Endocrinol. 25, 503–515.PubMedCrossRefGoogle Scholar
  52. Stone, W.L., Krishnan, K., Campbell, S.E., Qui, M., Whaley, S.G., and Yang, H. (2004). Tocopherols and the treatment of colon cancer. Ann. N. Y. Acad. Sci. 1031, 223–233.PubMedCrossRefGoogle Scholar
  53. Sun, Y., and Rigas, B. (2008). The thioredoxin system mediates redox-induced cell death in human colon cancer cells: implications for the mechanism of action of anticancer agents. Cancer Res. 68, 8269–8277.PubMedCrossRefGoogle Scholar
  54. Veal, E.A., Day, A.M., and Morgan, B.A. (2007) Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14.PubMedCrossRefGoogle Scholar
  55. Wang, X., Ling, S., Zhao, D., Sun, Q., Li, Q., Wu, F., Nie, J., Qu, L., Wang, B., Shen, X., et al. (2010). Redox regulation of actin by thioredoxin-1 is mediated by the interaction of the proteins via cysteine 62. Antioxid. Redox. Signal. 13, 565–573.PubMedCrossRefGoogle Scholar
  56. Weitz, J., Koch, M., Debus, J., Hohler, T., Galle, P.R., and Buchler, M.W. (2005). Colorectal cancer. Lancet 365, 153–165.PubMedCrossRefGoogle Scholar
  57. Werth, C., Stuhlmann, D., Cat, B., Steinbrenner, H., Alili, L., Sies, H., and Brenneisen, P. (2008). Stromal resistance of fibroblasts against oxidative damage: involvement of tumor cell-secreted platelet-derived growth factor (PDGF) and phosphoinositide 3-kinase (PI3K) activation. Carcinogenesis 29, 404–410.PubMedCrossRefGoogle Scholar
  58. Winterbourn, C.C., and Hampton, M.B. (2008). Thiol chemistry and specificity in redox signaling. Free Radic. Biol. Med. 45, 549–561.PubMedCrossRefGoogle Scholar
  59. Xu, D., Suenaga, N., Edelmann, M.J., Fridman, R., Muschel, R.J., and Kessler, B.M. (2008). Novel MMP-9 substrates in cancer cells revealed by a label-free quantitative proteomics approach. Mol. Cell Proteomics 7, 2215–2228.PubMedCrossRefGoogle Scholar
  60. Yang, H.Y., Kwon, J., Park, H.R., Kwon, S.O., Park, Y.K., Kim, H.S., Chung, Y.J., Chang, Y.J., Choi, H.I., Chung, K.J., et al. (2012a). Comparative proteomic analysis for the insoluble fractions of colorectal cancer patients. J. Proteomics 75, 3639–3653.PubMedCrossRefGoogle Scholar
  61. Yang, H.Y., Kwon, J., Choi, H.I., Park, S.H., Yang, U., Park, H.R., Ren, L., Chung, K.J., Kim, Y.U., Park, B.J., et al. (2012b). Indepth analysis of cysteine oxidation by the RBC proteome: advantage of peroxiredoxin II knockout mice. Proteomics 12, 101–112.PubMedCrossRefGoogle Scholar
  62. Ziech, D., Franco, R., Pappa, A., and Panayiotidis, M.I. (2011). Reactive oxygen species (ROS)—induced genetic and epigenetic alterations in human carcinogenesis. Mutat. Res. 711, 167–173.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Hee-Young Yang
    • 1
  • Kee-Oh Chay
    • 2
  • Joseph Kwon
    • 3
  • Sang-Oh Kwon
    • 4
  • Young-Kyu Park
    • 5
  • Tae-Hoon Lee
    • 1
  1. 1.Department of Oral Biochemistry, Dental Science Research Institute and the Brain Korea 21 Project, Medical Research Center for Biomineralization Disorders, School of DentistryChonnam National UniversityHwasunKorea
  2. 2.Department of BiochemistryChonnam National University Medical SchoolHwasunKorea
  3. 3.Korea Basic Science InstituteGwangjuKorea
  4. 4.Division of Life ScienceKorea Basic Science InstituteDaejeonKorea
  5. 5.Department of SurgeryChonnam National University Hwasun HospitalHwasunKorea

Personalised recommendations