Advertisement

Molecules and Cells

, Volume 35, Issue 4, pp 348–354 | Cite as

Acteoside improves survival in cecal ligation and puncture-induced septic mice via blocking of high mobility group box 1 release

  • Eun Sun Seo
  • Bo Kang Oh
  • Jhang Ho Pak
  • Soon-Ho Yim
  • Sangilyandi Gurunathan
  • Young-Pil Kim
  • Kyung Jin LeeEmail author
Research Article

Abstract

Acteoside, an active phenylethanoid glycoside, has been used traditionally as an anti-inflammatory agent. The molecular mechanism by which acteoside reduces inflammation was investigated in lipopolysaccharide (LPS)-induced Raw264.7 cells and in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. In vitro, acteoside inhibits high mobility group box 1 (HMGB1) release and iNOS/NO production and induces heme oxygenase-1 (HO-1) expression in a concentration-dependent manner, while HO-1 siRNA antagonizes the inhibition of HMGB1 and NO. The effect of acteoside is inhibited by the p38 mitogen-activated protein kinase (MAPK) inhibitor SB203580 and Nfr2 siRNA, indicating that acteoside induces HO-1 via p38 MAPK and NF-E2-related factor 2 (Nrf2). In vivo, acteoside increases survival and decreases serum and lung HMGB1 levels in CLP-induced sepsis. Overall, these results that acteoside reduces HMGB1 release and may be beneficial for the treatment of sepsis.

Keywords

acteoside heme oxygenase 1 high-mobility group box 1 nrf2 p38 Raw264.7 cell sepsis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alam, J., and Cook, J.L. (2003). Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr. Pharm. Des. 9, 2499–2511.PubMedCrossRefGoogle Scholar
  2. Andersson, U., Wang, H., Palmblad, K., Aveberger, A.C., Bloom, O., Erlandsson-Harris, H., Janson, A., Kokkola, R., Zhang, M., Yang, H., et al. (2000). High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192, 565–570.PubMedCrossRefGoogle Scholar
  3. Aziz, M., Jacob, A., Yang, W.L., Matsuda, A., and Wang, P. (2012). Current trends in inflammatory and immunomodulatory mediators in sepsis. J. Leukoc. Biol. 93, 329–342.PubMedCrossRefGoogle Scholar
  4. Barnay-Verdier, S., Fattoum, L., Borde, C., Kaveri, S., Gibot, S., and Marechal, V. (2011). Emergence of autoantibodies to HMGB1 is associated with survival in patients with septic shock. Intensive Care Med. 37, 957–962.PubMedCrossRefGoogle Scholar
  5. Boberek, J.M., Stach, J., and Good, L. (2010). Genetic evidence for inhibition of bacterial division protein FtsZ by berberine. PLoS One 5, e13745.PubMedCrossRefGoogle Scholar
  6. Bonelli, M., Savitskaya, A., Steiner, C.W., Rath, E., Bilban, M., Wagner, O., Bach, F.H., Smolen, J.S., and Scheinecker, C. (2012). Heme oxygenase-1 end-products carbon monoxide and biliverdin ameliorate murine collagen induced arthritis. Clin. Exp. Rheumatol. 30, 73–78.PubMedGoogle Scholar
  7. Chavan, S.S., Huerta, P.T., Robbiati, S., Valdes-Ferrer, S.I., Ochani, M., Dancho, M., Frankfurt, M., Volpe, B.T., Tracey, K.J., and Diamond, B. (2012). Response to “HMGB1 mediates cognitive impairment in sepsis survivors”. Mol. Med. 18, 930–937.PubMedGoogle Scholar
  8. Farombi, E.O., and Surh, Y.J. (2006). Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J. Biochem. Mol. Biol. 39, 479–491.PubMedCrossRefGoogle Scholar
  9. Hayashi, K., Nagamatsu, T., Ito, M., Hattori, T., and Suzuki, Y. (1994). Acteoside, a component of Stachys sieboldii MIQ, may be a promising antinephritic agent (2): effect of acteoside on leukocyte accumulation in the glomeruli of nephritic rats. Jpn. J. Pharmacol. 66, 47–52.PubMedCrossRefGoogle Scholar
  10. He, J., Hu, X.P., Zeng, Y., Li, Y., Wu, H.Q., Qiu, R.Z., Ma, W.J., Li, T., Li, C.Y., and He, Z.D. (2011). Advanced research on acteoside for chemistry and bioactivities. J. Asian Nat. Prod. Res. 13, 449–464.PubMedCrossRefGoogle Scholar
  11. Hill-Kapturczak, N., Truong, L., Thamilselvan, V., Visner, G.A., Nick, H.S., and Agarwal, A. (2000). Smad7-dependent regulation of heme oxygenase-1 by transforming growth factor-beta in human renal epithelial cells. J. Biol. Chem. 275, 40904–40909.PubMedCrossRefGoogle Scholar
  12. Houghton, P.J. (1984). Ethnopharmacology of some Buddleja species. J. Ethnopharmacol. 11, 293–308.PubMedCrossRefGoogle Scholar
  13. Huang, W., Tang, Y., and Li, L. (2010). HMGB1, a potent proinflammatory cytokine in sepsis. Cytokine 51, 119–126.PubMedCrossRefGoogle Scholar
  14. Hwang, Y.P., and Jeong, H.G. (2010). Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptor-related PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol. Appl. Pharmacol. 242, 18–28.PubMedCrossRefGoogle Scholar
  15. Inoue, M., Sakuma, Z., Ogihara, Y., and Saracoglu, I. (1998). Induction of apoptotic cell death in HL-60 cells by acteoside, a phenylpropanoid glycoside. Biol. Pharm. Bull. 21, 81–83.PubMedCrossRefGoogle Scholar
  16. Jang, H.J., Kim, Y.M., Tsoyi, K., Park, E.J., Lee, Y.S., Kim, H.J., Lee, J.H., Joe, Y., Chung, H.T., and Chang, K.C. (2012). Ethyl pyruvate induces heme oxygenase-1 through p38 mitogenactivated protein kinase activation by depletion of glutathione in RAW 264.7 cells and improves survival in septic animals. Antioxid. Redox Signal. 17, 878–889.CrossRefGoogle Scholar
  17. Jiang, W., and Pisetsky, D.S. (2006). The role of IFN-alpha and nitric oxide in the release of HMGB1 by RAW 264.7 cells stimulated with polyinosinic-polycytidylic acid or lipopolysaccharide. J. Immunol. 177, 3337–3343.PubMedGoogle Scholar
  18. Johnson, M.R., Wang, K., Smith, J.B., Heslin, M.J., and Diasio, R.B. (2000). Quantitation of dihydropyrimidine dehydrogenase expression by real-time reverse transcription polymerase chain reaction. Anal. Biochem. 278, 175–184.PubMedCrossRefGoogle Scholar
  19. Lavrovsky, Y., Schwartzman, M.L., Levere, R.D., Kappas, A., and Abraham, N.G. (1994). Identification of binding sites for transcription factors NF-kappa B and AP-2 in the promoter region of the human heme oxygenase 1 gene. Proc. Natl. Acad. Sci. USA 91, 5987–5991.PubMedCrossRefGoogle Scholar
  20. Lee, K.J., Woo, E.R., Choi, C.Y., Shin, D.W., Lee, D.G., You, H.J., and Jeong, H.G. (2004). Protective effect of acteoside on carbon tetrachloride-induced hepatotoxicity. Life Sci. 74, 1051–1064.PubMedCrossRefGoogle Scholar
  21. Lee, J.Y., Woo, E.R., and Kang, K.W. (2005). Inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J. Ethnopharmacol. 97, 561–566.PubMedCrossRefGoogle Scholar
  22. Luz, N.F., Andrade, B.B., Feijo, D.F., Araujo-Santos, T., Carvalho, G.Q., Andrade, D., Abanades, D.R., Melo, E.V., Silva, A.M., Brodskyn, C.I., et al. (2012). Heme oxygenase-1 promotes the persistence of Leishmania chagasi infection. J. Immunol. 188, 4460–4467.PubMedCrossRefGoogle Scholar
  23. Martin, D., Rojo, A.I., Salinas, M., Diaz, R., Gallardo, G., Alam, J., De Galarreta, C.M., and Cuadrado, A. (2004). Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J. Biol. Chem. 279, 8919–8929.PubMedCrossRefGoogle Scholar
  24. Oh, G.S., Pae, H.O., Lee, B.S., Kim, B.N., Kim, J.M., Kim, H.R., Jeon, S.B., Jeon, W.K., Chae, H.J., and Chung, H.T. (2006). Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med. 41, 106–119.PubMedCrossRefGoogle Scholar
  25. Oh, Y.J., Youn, J.H., Ji, Y., Lee, S.E., Lim, K.J., Choi, J.E., and Shin, J.S. (2009). HMGB1 is phosphorylated by classical protein kinase C and is secreted by a calcium-dependent mechanism. J. Immunol. 182, 5800–5809.PubMedCrossRefGoogle Scholar
  26. Paine, A., Eiz-Vesper, B., Blasczyk, R., and Immenschuh, S. (2010). Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 1895–1903.PubMedCrossRefGoogle Scholar
  27. Sama, A.E., D’Amore, J., Ward, M.F., Chen, G., and Wang, H. (2004). Bench to bedside: HMGB1-a novel proinflammatory cytokine and potential therapeutic target for septic patients in the emergency department. Acad. Emerg. Med. 11, 867–873.PubMedGoogle Scholar
  28. Srisook, K., Kim, C., and Cha, Y.N. (2005). Molecular mechanisms involved in enhancing HO-1 expression: de-repression by heme and activation by Nrf2, the “one-two” punch. Antioxid. Redox Signal. 7, 1674–1687.PubMedCrossRefGoogle Scholar
  29. Suh, G.Y., Jin, Y., Yi, A.K., Wang, X.M., and Choi, A.M. (2006). CCAAT/enhancer-binding protein mediates carbon monoxideinduced suppression of cyclooxygenase-2. Am. J. Respir. Cell Mol. Biol. 35, 220–226.PubMedCrossRefGoogle Scholar
  30. Surh, Y.J., Kundu, J.K., Li, M.H., Na, H.K., and Cha, Y.N. (2009). Role of Nrf2-mediated heme oxygenase-1 upregulation in adaptive survival response to nitrosative stress. Arch. Pharm. Res. 32, 1163–1176.PubMedCrossRefGoogle Scholar
  31. Tsoyi, K., Lee, T.Y., Lee, Y.S., Kim, H.J., Seo, H.G., Lee, J.H., and Chang, K.C. (2009). Heme-oxygenase-1 induction and carbon monoxide-releasing molecule inhibit lipopolysaccharide (LPS)-induced high-mobility group box 1 release in vitro and improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis model in vivo. Mol. Pharmacol. 76, 173–182.PubMedCrossRefGoogle Scholar
  32. Tsoyi, K., Jang, H.J., Kim, J.W., Chang, H.K., Lee, Y.S., Pae, H.O., Kim, H.J., Seo, H.G., Lee, J.H., Chung, H.T., et al. (2011). Stimulation of alpha7 nicotinic acetylcholine receptor by nicotine attenuates inflammatory response in macrophages and improves survival in experimental model of sepsis through heme oxygenase-1 induction. Antioxid. Redox Signal. 14, 2057–2070.PubMedCrossRefGoogle Scholar
  33. Wang, H.Q., Xu, Y.X., and Zhu, C.Q. (2012). Upregulation of heme oxygenase-1 by acteoside through ERK and PI3 K/Akt pathway confer neuroprotection against beta-amyloid-induced neurotoxicity. Neurotox. Res. 21, 368–378.PubMedCrossRefGoogle Scholar
  34. Wong, I.Y., He, Z.D., Huang, Y., and Chen, Z.Y. (2001). Antioxidative activities of phenylethanoid glycosides from Ligustrum purpurascens. J. Agric. Food Chem. 49, 3113–3119.PubMedCrossRefGoogle Scholar
  35. Wu, M.L., Ho, Y.C., Lin, C.Y., and Yet, S.F. (2011). Heme oxygenase-1 in inflammation and cardiovascular disease. Am. J. Cardiovasc. Dis. 1, 150–158.PubMedGoogle Scholar
  36. Yang, H., Ochani, M., Li, J., Qiang, X., Tanovic, M., Harris, H.E., Susarla, S.M., Ulloa, L., Wang, H., DiRaimo, R., et al. (2004). Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. USA 101, 296–301.PubMedCrossRefGoogle Scholar
  37. Zhang, X., Lu, L., Dixon, C., Wilmer, W., Song, H., Chen, X., and Rovin, B.H. (2004). Stress protein activation by the cyclopentenone prostaglandin 15-deoxy-delta12,14-prostaglandin J2 in human mesangial cells. Kidney Int. 65, 798–810.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2013

Authors and Affiliations

  • Eun Sun Seo
    • 1
    • 2
  • Bo Kang Oh
    • 1
  • Jhang Ho Pak
    • 1
  • Soon-Ho Yim
    • 1
  • Sangilyandi Gurunathan
    • 3
  • Young-Pil Kim
    • 4
  • Kyung Jin Lee
    • 1
    Email author
  1. 1.Department of MedicineUniversity of Ulsan College of Medicine, Asan Medical CenterSeoulKorea
  2. 2.Department of OptometryDong Shin UniversityNajuKorea
  3. 3.Department of Animal BiotechnologyKonkuk UniversitySeoulKorea
  4. 4.Department of Life ScienceHanyang UniversitySeoulKorea

Personalised recommendations