Molecules and Cells

, Volume 33, Issue 2, pp 183–193 | Cite as

A MAP kinase pathway is implicated in the pseudohyphal induction by hydrogen peroxide in Candica albicans

  • Kavitha Srinivasa
  • Jihyun Kim
  • Subog Yee
  • Wankee KimEmail author
  • Wonja ChoiEmail author


Hydrogen peroxide (H2O2) functions as a ubiquitous intracellular messenger besides as an oxidative stress molecule. This dual role is based on the distinct cellular responses against different concentrations of H2O2. Previously, we demonstrated that both low (> 1 mM) and high (4–10 mM) doses of exogenous H2O2 induce filamentous growth with distinct cell morphology and growth rate in Candida albicans, suggesting the different transcription response. In this study, we revealed that the sub-toxic and toxic levels of H2O2 indeed induced pseudohyphae, but not true hyphae. Supporting this, several hyphae-specific genes that are expressed in true hyphae induced by serum were not detected in either sub-toxic or toxic H2O2 condition. A DNA microarray analysis was conducted to reveal the transcription profiles in cells treated with sub-toxic and toxic conditions of H2O2. Under the sub-toxic condition, a small number of genes involved in cell proliferation and metabolism were up-regulated, whereas a large number of genes were up-regulated in the toxic condition where the genes required for growth and proliferation were selectively restricted. For pseudohyphal induction by sub-toxic H2O2, Cek1 MAPK activating the transcription factor Cph1 was shown to be important. The absence of expression of several hyphae-specific genes known to be downstream targets of Cph1-signaling pathway for true hyphae formation suggests that the Cek1-mediated signaling pathway is not solely responsible for pseudohyphal formation by subtoxic H2O2 and, but instead, complex networking pathway may exists by the activation of different regulators.


Candida albicans H2O2 intracellular messenger signaling pathway transcription profiling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguirre, J., Rios-Momberg, M., Hewitt, D., and Hansberg, W. (2005). Reactive oxygen species and development in microbial eukaryotes. Trends Microbiol. 13, 111–118.PubMedCrossRefGoogle Scholar
  2. Alonso-Monge, R., Roman, E., Arana, D.M., Prieto, D., Urrialde, V., Nombela, C., and Pal, J. (2010). The Sko1 protein represses the yeast-to-hypha transition and regulates the oxidative stress response in Candida albicans. Fungal Genet. Biol. 47, 587–601.PubMedCrossRefGoogle Scholar
  3. Andaluz, E., Ciudad, T., Gomez-Raja, J., Calderone, R., and Larriba, G. (2006). Rad52 depletion in Candida albicans triggers both the DNA-damage checkpoint and filamentation accompanied by but independent of expression of hypha-specific genes. Mol. Microbiol. 59, 1452–1472.PubMedCrossRefGoogle Scholar
  4. Bachewich, C., and Whiteway, M. (2005). Cyclin Cln3p links G1 progression to hyphal and pseudohyphal development in Candida albicans. Eukaryot. Cell 4, 95–102.PubMedCrossRefGoogle Scholar
  5. Bensen, E.S., Filler, S.G., and Berman, J. (2002). A forkhead transcription factor is important for true hyphal as well as yeast morphogenesis in Candida albicans. Eukaryot. Cell 1, 787–798.PubMedCrossRefGoogle Scholar
  6. Berman, J. (2006). Morphogenesis and cell cycle progression in Candida albicans. Curr. Opin. Microbiol. 9, 595–601.PubMedCrossRefGoogle Scholar
  7. Biswas, S., Van Dijck, P., and Datta, A. (2007). Environmental sensing and signal transduction pathways regulating morphopathogenic determinants of Candida albicans. Microbiol. Mol. Biol. Rev. 71, 348–376.PubMedCrossRefGoogle Scholar
  8. Biteau, B., Labarre, J., and Toledano, M.B. (2003). ATP-dependent reduction of cysteine-sulphinic acid by S. cerevisiae sulphiredoxin. Nature 425, 980–984.PubMedCrossRefGoogle Scholar
  9. Boisnard, S., Ruprich-Robert, G., Florent, M., Da Silva, B., Chapeland-Leclerc, F., and Papon, N. (2008). Role of Sho1p adaptor in the pseudohyphal development, drugs sensitivity, osmotolerance and oxidant stress adaptation in the opportunistic yeast Candida lusitaniae. Yeast 25, 849–859.PubMedCrossRefGoogle Scholar
  10. Braun, B.R., and Johnson, A.D. (1997). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.PubMedCrossRefGoogle Scholar
  11. Buggisch. M., Ateghang, B., Ruhe, C., Strobel, C., Lange, S., Wartenberg, M., and Sauer, H. (2007). Stimulation of ES-cell-derived cardiomyogenesis and neonatal cardiac cell proliferation by reactive oxygen species and NADPH oxidase. J. Cell Sci. 120, 885–894.PubMedCrossRefGoogle Scholar
  12. Butler, D.K., All, O., Goffena, J., Loveless, T., Wilson, T., and Toenjes, K.A. (2006). The GRR1 gene of Candida albicans is involved in the negative control of pseudohyphal morphogenesis. Fungal Genet. Biol. 43, 573–582.PubMedCrossRefGoogle Scholar
  13. Calderone, R.A., and Fonzi, W.A. (2001). Virulence factors of Candida albicans. Trends Microbiol. 9, 327–335.PubMedCrossRefGoogle Scholar
  14. Castillo, L., Calvo, E., Martinez, A.I., Ruiz-Herrera, J., Valentin, E., Lopez, J.A., and Santandreu, R. (2008). A study of the Candida albicans cell wall proteome. Proteomics 8, 3871–3881.PubMedCrossRefGoogle Scholar
  15. Cleary, I.A., Mulabagal, P., Reinhard, S.M., Yadev, N.P., Murdoch, C., Thornhill, M.H., Lazzell, A.L., Monteaqudo, C., Thomas, D.P., and Saville, S.P. (2010). Pseudohyphal regulation by the transcription factor Rfg1p in Candida albicans. Eukaryot. Cell 9, 1363–1373.PubMedCrossRefGoogle Scholar
  16. Cottier, F., and Muhlschlegel, F.A. (2009). Sensing the environment: response of Candida albicans to the X factor. FEMS Microbiol. Lett. 295, 1–9.PubMedCrossRefGoogle Scholar
  17. Csank, C., Schroppel, K., Leberer, E., Harcus, D., Mohamed, O., Meloche, S., Thomas, D.Y., and Whiteway, M. (1998). Roles of the Candida albicans mitogen-activated protein kinase homolog, Cek1p, in hyphal development and systemic candidiasis. Infect. Immun. 66, 2713–2721.PubMedGoogle Scholar
  18. Davies, K.J. (2000). Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50, 279–289.PubMedCrossRefGoogle Scholar
  19. Dhillon, N.K., Sharma, S., and Khuller, G.K. (2003). Signaling through protein kinases and transcriptional regulators in Candida albicans. Crit. Rev. Microbiol. 29, 259–275.PubMedCrossRefGoogle Scholar
  20. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., et al. (2003). Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442–446.PubMedCrossRefGoogle Scholar
  21. Harcus, D., Nantel, A., Marcil, A., Rigby, T., and Whiteway, M. (2004). Transcription profiling of cyclic AMP signaling in Candida albicans. Mol. Biol. Cell. 15, 4490–4499.PubMedCrossRefGoogle Scholar
  22. Hong, J., Zhang, J., Liu, Z., Qin, S., Wu, J., and Shi, Y. (2009). Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast. Biochemistry 48, 6824–6834.PubMedCrossRefGoogle Scholar
  23. Hornby, J.M., Dumitru, R., and Nickerson, K.W. (2004). High phosphate (up to 600 mM) induces pseudohyphal development in five wild type Candida albicans. J. Microbiol. Methods 56, 119–124.PubMedCrossRefGoogle Scholar
  24. Hwang, C.S., Oh, J.H., Huh, W.K., Yim, H.S., and Kang, S.O. (2003). Ssn6, an important factor of morphological conversion and virulence in Candida albicans. Mol. Microbiol. 47, 1029–1043.PubMedCrossRefGoogle Scholar
  25. Kadosh, D., and Johnson, A.D. (2001). Rfg1, a protein related to the Saccharomyces cerevisiae hypoxic regulator Rox1, controls filamentous growth and virulence in Candida albicans. Mol. Cell. Biol. 21, 2496–2505.PubMedCrossRefGoogle Scholar
  26. Kunze, D., and MacCallum, D. (2007). Odds FC, Hube B. Multiple functions of DOA1 in Candida albicans. Microbiology 153, 1026–1041.PubMedCrossRefGoogle Scholar
  27. Lane, S., Birse, C., Zhou, S., Matson, R., and Liu, H. (2001). DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J. Biol. Chem. 276, 48988–48996.PubMedCrossRefGoogle Scholar
  28. Leberer, E., Harcus, D., Broadbent, I.D., Clark, K.L., Dignard, D., Ziegelbauer, K., Schmidt, A., Gow, N.A., Brown, A.J., and Thomas, D.Y. (1996). Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 93, 13217–13222.PubMedCrossRefGoogle Scholar
  29. Leng, P., Lee, P.R., Wu, H., and Brown, A.J. (2001). Efg1, a morphogenetic regulator in Candida albicans, is a sequence-specific DNA binding protein. J. Bacteriol. 183, 4090–4093.PubMedCrossRefGoogle Scholar
  30. Li, J., Stouffs, M., Serrander, L., Banfi, B., Bettiol, E., Charnay, Y., Steger, K., Krause, K.H., and Jaconi, M.E. (2006). The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation. Mol. Biol. Cell. 17, 3978–3988.PubMedCrossRefGoogle Scholar
  31. Liu, H., Kohler, J., and Fink, G.R. (1994). Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 266, 1723–1726.PubMedCrossRefGoogle Scholar
  32. Lo, H.J., Kohler, J.R., DiDomenico, B., Loebenberg, D., Cacciapuoti, A., and Fink, G.R. (1997). Nonfilamentous C. albicans mutants are avirulent. Cell 90, 939–949.Google Scholar
  33. Lorenz, M.C., Bender, J.A., and Fink, G.R. (2004). Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryot. Cell 3, 1076–1087.PubMedCrossRefGoogle Scholar
  34. Martin, K.R., and Barrett, J.C. (2002). Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum. Exp. Toxicol. 21, 71–75.PubMedCrossRefGoogle Scholar
  35. Mesquita, F.S., Dyer, S.N., Heinrich, D.A., Bulun, S.E., Marsh, E.E., and Nowak, R.A. (2009). Reactive oxygen species mediate mitogenic growth factor signaling pathways in human leiomyoma smooth muscle cells. Biol. Reprod. 2009.Google Scholar
  36. Murad, A.M., d’Enfert, C., Gaillardin, C., Tournu, H., Tekaia, F., Talibi, D., Marechal. D., Marchais, V., Cottin, J., and Brown A.J. (2001a). Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1. Mol. Microbiol. 42, 981–993.PubMedCrossRefGoogle Scholar
  37. Murad, A.M., Leng, P., Straffon, M., Wishart, J., Macaskill, S., Mac-Callum, D., Schnell, N. Talibi, D., Marechal, D., Tekaia, F., et al. (2001b). NRG1 represses yeast-hypha morphogenesis and hyphaspecific gene expression in Candida albicans. EMBO J. 20, 4742–4752.PubMedCrossRefGoogle Scholar
  38. Nakamura, H. (2005). Thioredoxin and its related molecules: update. Antioxid. Redox. Signal. 7, 823–828.PubMedCrossRefGoogle Scholar
  39. Nantel, A., Dignard, D., Bachewich, C., Harcus, D., Marcil, A., Bouin, A.P., Sensen, C.W., Hogues, H., van het Hoog., M., Gordon, P., et al. (2002). Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol. Biol. Cell. 13, 3452–3465.PubMedCrossRefGoogle Scholar
  40. Nasution, O., Srinivasa, K., Kim, M., Kim, Y.J., Kim, W., Jeong, W., and Choi, W.J. (2008). Hydrogen peroxide induces hyphal differentiation in Candida albicans. Eukaryot. Cell 7, 2008–2011.PubMedCrossRefGoogle Scholar
  41. Navarro-Garcia, F., Sanchez, M., Pla, J., and Nombela, C. (1995). Functional characterization of the MKC1 gene of Candida albicans, which encodes a mitogen-activated protein kinase homolog related to cell integrity. Mol. Cell. Biol. 15, 2197–2206.PubMedGoogle Scholar
  42. Ohba, M., Shibanuma, M., Kuroki, T., and Nose, K. (1994). Production of hydrogen peroxide by transforming growth factor-beta 1 and its involvement in induction of egr-1 in mouse osteoblastic cells. J. Cell Biol. 126, 1079–1088.PubMedCrossRefGoogle Scholar
  43. Phillips, A.J., Sudbery, I., and Ramsdale, M. (2003). Apoptosis induced by environmental stresses and amphotericin B in Candida albicans. Proc. Natl. Acad. Sci. USA 100, 14327–14332.PubMedCrossRefGoogle Scholar
  44. Phillips, A.J., Crowe, J.D., and Ramsdale, M. (2006). Ras pathway signaling accelerates programmed cell death in the pathogenic fungus Candida albicans. Proc. Natl. Acad. Sci. USA 103, 726–731.PubMedCrossRefGoogle Scholar
  45. Quinn, J., Findlay, V.J., Dawson, K., Millar, J.B., Jones, N., Morgan, B.A., and Toone, W.M. (2002). Distinct regulatory proteins control the graded transcriptional response to increasing H(2)O(2) levels in fission yeast Schizosaccharomyces pombe. Mol. Biol. Cell. 13, 805–816.PubMedCrossRefGoogle Scholar
  46. Reth, M. (2002). Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3, 1129–1134.PubMedCrossRefGoogle Scholar
  47. Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000). Hydrogen peroxide: a key messenger that modulates protein phosphorylation through cysteine oxidation. Sci. STKE 2000; PE1.Google Scholar
  48. Rhee, S.G., Kang, S.W., Jeong, W., Chang, T.S., Yang, K.S., and Woo, H.A. (2005). Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr. Opin. Cell. Biol. 17, 183–189.PubMedCrossRefGoogle Scholar
  49. Rhee, S.G., Chang, T.S., Jeong, W., Kang, D. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 29, 539–549.PubMedCrossRefGoogle Scholar
  50. Rocha, C.R., Schroppel, K., Harcus, D., Marcil, A., Dignard, D., Taylor, B.N., Thomas, D.Y., Whiteway, M., and Leberer, E. (2001). Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol. Biol. Cell 12, 631–643.Google Scholar
  51. Roman, E., Arana, D.M., Nombela, C., Alonso-Monge, R., and Pla, J. (2007). MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15, 181–190.PubMedCrossRefGoogle Scholar
  52. Rupp, S., Summers, E., Lo, H.J., Madhani, H., and Fink, G. (1999). MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. EMBO J. 18, 1257–1269.PubMedCrossRefGoogle Scholar
  53. Sablina, A.A., Budanov, A.V., Ilyinskaya, G.V., Agapova, L.S., Kravchenko, J.E., and Chumakov, P.M. (2005). The antioxidant function of the p53 tumor suppressor. Nat. Med. 11, 1306–1313.PubMedCrossRefGoogle Scholar
  54. Sambrook, J., and Russell, D.W. (2001). Molecular cloning: a laboratory manual. (Cold Spring Harbor, N.Y.: Cold Spring Harbor Laboratory Press).Google Scholar
  55. Shin, D.H., Jung, S., Park, S.J., Kim, Y.J., Ahn, J.M., Kim, W., and Choi, W. (2005). Characterization of thiol-specific antioxidant 1 (TSA1) of Candida albicans. Yeast (Chichester, England) 22, 907–918.CrossRefGoogle Scholar
  56. Stoldt, V.R., Sonneborn, A., Leuker, C.E., and Ernst, J.F. (1997). Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J. 16, 1982–1991.PubMedCrossRefGoogle Scholar
  57. Stone, J.R., and Yang, S. (2006). Hydrogen peroxide: a signaling messenger. Antioxid. Redox. Signal. 8, 243–270.PubMedCrossRefGoogle Scholar
  58. Sudbery, P., Gow, N., and Berman, J. (2004). The distinct morphogenic states of Candida albicans. Trends Microbiol. 12, 317–324.PubMedCrossRefGoogle Scholar
  59. Sundaresan, M., Yu, Z.X., Ferrans, V.J., Irani, K., and Finkel, T. (1995). Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270, 296–299.PubMedCrossRefGoogle Scholar
  60. Thannickal, V.J., and Fanburg, B.L. (2000). Reactive oxygen species in cell signaling. Am. J. Physiol. Lung Cell Mol. Physiol. 279, L1005–28.PubMedGoogle Scholar
  61. Veal, E.A., Day, A.M., and Morgan, B.A. (2007). Hydrogen peroxide sensing and signaling. Mol. Cell 26, 1–14.PubMedCrossRefGoogle Scholar
  62. Vivancos, A.P., Jara, M., Zuin, A., Sanso, M., and Hidalgo, E. (2006). Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol. Genet. Genomics 276, 495–502.PubMedCrossRefGoogle Scholar
  63. Wightman, R., Bates, S., Amornrrattanapan, P., and Sudbery, P. (2004). In Candida albicans, the Nim1 kinases Gin4 and Hsl1 negatively regulate pseudohypha formation and Gin4 also controls septin organization. J. Cell. Biol. 164, 581–591.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  1. 1.Division of Life and Pharmaceutical SciencesEwha Womans UniversitySeoulKorea
  2. 2.Microbial Resources Research CenterEwha Womans UniversitySeoulKorea
  3. 3.Institute for Medical Sciences, School of MedicineAjou UniversitySuwonKorea

Personalised recommendations