Molecules and Cells

, Volume 33, Issue 3, pp 269–275 | Cite as

Activation of Rice nicotianamine synthase 2 (OsNAS2) enhances iron availability for biofortification

  • Sichul Lee
  • You-Sun Kim
  • Un Sil Jeon
  • Yoon-Keun Kim
  • Jan K. Schjoerring
  • Gynheung An
Article

Abstract

Because micronutrients in human diets ultimately come from plant sources, malnutrition of essential minerals is a significant public health concern. By increasing the expression of nicotianamine synthase (NAS), we fortified the level of bioavailable iron in rice seeds. Activation of iron deficiency-inducible OsNAS2 resulted in a rise in Fe content (3.0-fold) in mature seeds. Its ectopic expression also increased that content. Enhanced expression led to higher tolerance of Fe deficiency and better growth under elevated pH. Mice fed with OsNAS2-D1 seeds recovered more rapidly from anemia, indicating that bioavailable Fe contents were improved by this increase in OsNAS2 expression.

Keywords

anemia bioavailability mouse rice 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnon, D.I. (1949). Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24. 1–15.PubMedCrossRefGoogle Scholar
  2. Arosio, P., Ingrassia, R., and Cavadini, P. (2009). Ferritins: a family of molecules for iron storage, antioxidation and more. Biochim. Biophys. Acta 1790, 589–599.PubMedCrossRefGoogle Scholar
  3. Briat, J.F. (2007). Iron dynamics in plants. Adv. Bot. Res. 46, 137–180CrossRefGoogle Scholar
  4. Douchkov, D., Gryczka, C., Stephan, U.W., Hell, R., and Baumlein, H. (2005). Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ. 28, 365–374.CrossRefGoogle Scholar
  5. Gómez-Galera, S., Rojas, E., Sudhakar, D., Zhu, C., Pelacho, A.M., Capell, T., and Christou, P. (2010). Critical evaluation of strategies for mineral fortification of staple food crops. Transgenic Res. 19, 165–180.PubMedCrossRefGoogle Scholar
  6. Goto, F., Yoshihara, T., Shigemoto, N., Toki, S., and Takaiwa, F. (1999). Iron fortification of rice seed by the soybean ferritin gene. Nat. Biotechnol. 17, 282–286.PubMedCrossRefGoogle Scholar
  7. Harrison, P.M., and Arosio, P. (1996). The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161–203.PubMedCrossRefGoogle Scholar
  8. Hayashi, A., and Kimoto, K. (2007). Nicotianamine preferentially inhibits Angiotensin I-converting enzyme. J. Nutr. Sci. Vitaminol. 53, 331–336.PubMedCrossRefGoogle Scholar
  9. Hell, R., and Stephan, U.W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta 216, 541–551.PubMedGoogle Scholar
  10. Higuchi, K., Kanazawa, K., Nishizawa, N.K., Chino, M., and Mori, S. (1994). Purification and characterization of nicotianamine synthase from Fe deficient barley roots. Plant Soil 165, 173–179.CrossRefGoogle Scholar
  11. Hoppler, M., Schönbächler, A., Meile, L., Hurrell, R.F., and Walczyk, T. (2008). Ferritin-iron is released during boiling and in vitro gastric digestion. J. Nutr. 138, 878–884PubMedGoogle Scholar
  12. Inoue, H., Higuchi, K., Takahashi, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2003). Three rice nicotianamine synthase genes, OsNAS1, OsNAS2 and OsNAS3, are expressed in cells involved in long-distance transport of iron and differentially regulated by iron. Plant J. 36, 366–381.PubMedCrossRefGoogle Scholar
  13. Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J. Biol. Chem. 284, 3470–3479.PubMedCrossRefGoogle Scholar
  14. Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., et al. (2006). Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+. Plant J. 45, 335–346.PubMedCrossRefGoogle Scholar
  15. Ishimaru, Y., Kim, S., Tsukamoto, T., Oki, H., Kobayashi, T., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., et al. (2007). Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil. Proc. Natl. Acad. Sci. USA 104, 7373–7378.PubMedCrossRefGoogle Scholar
  16. Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., et al. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J. 62, 379–390.PubMedCrossRefGoogle Scholar
  17. Jeon, J.S., Jung, K.H., Kim, H.-B., Suh, J.-P., and Khush, G.S. (2011). Genetic and molecular insights into the enhancement of rice yield potential. J. Plant Biol. 54, 1–9.CrossRefGoogle Scholar
  18. Kobayashi, T., Nakanishi, H., Takahashi, M., Mori, S., and Nishizawa, N.K. (2008). Generation and field trials of transgenic rice tolerant to iron deficiency. Rice 1, 144–153.CrossRefGoogle Scholar
  19. Lee, S., and An, G. (2009). Overexpression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant Cell Environ. 32, 408–416.PubMedCrossRefGoogle Scholar
  20. Lee, S., Chiecko, J.C., Kim, S.A., Walker, E.L., Lee, Y., Guerinot, M.L., and An, G. (2009a). Disruption of OsYSL15 leads to iron inefficiency in rice plants. Plant Physiol. 150, 786–800.PubMedCrossRefGoogle Scholar
  21. Lee, S., Jeon, U.S., Lee, S.J., Kim, Y.K., Persson, D.P., Husted, S., Schjørring, J.K., Kakei, Y., Masuda, H., Nishizawa, N.K., et al. (2009b). IIron fortification of rice through activation of the nicotianamine synthase gene. Proc. Natl. Acad. Sci. USA 106, 22014–22019.PubMedCrossRefGoogle Scholar
  22. Lee, S., Persson, D.P., Hansen, T.H., Husted, S., Schjørring, J.K., Kim, Y.-S., Jeon, U.S., Kim, Y.K., Kakei, Y., Masuda, H., et al. (2011). Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant Biotechnol. J. 9, 865–873.PubMedCrossRefGoogle Scholar
  23. Masuda, H., Usuda, K., Kobayashi, T., Ishimaru, Y., Kakei, Y., Takahashi, M., Higuchi, K., Nakanishi, H., Mori, S., and Nishizawa, N.K. (2009). Overexpression of the barley nicotianamine synthase gene HvNAS1 increases iron and zinc concentrations in rice grains. Rice 2, 155–166.CrossRefGoogle Scholar
  24. Mayer, J.E., Pfeiffer, W.H., and Beyer, P. (2008). Biofortified crops to alleviate micronutrient malnutrition. Curr. Opin. Plant Biol. 11, 166–170.PubMedCrossRefGoogle Scholar
  25. Ramesh, S.A., Choimes, S., and Schachtman, D.P. (2004). Overexpression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol. Biol. 54, 373–385.PubMedCrossRefGoogle Scholar
  26. Stein, A.J. (2010). Global impact of human mineral malnutrition. Plant Soil 335, 133–154.CrossRefGoogle Scholar
  27. Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K., and Mori, S. (2001). Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nat. Biotechnol. 19, 466–469.PubMedCrossRefGoogle Scholar
  28. Usuda, K., Wada, Y., Ishimaru, Y., Kobayashi, T., Takahashi, M., Nakanishi, H., Nagato, Y., Mori, S., and Nishizawa, N.K. (2009). Genetically engineered rice containing larger amounts of nicotianamine to enhance the antihypertensive effect. Plant Biotechnol. J. 71, 87–95.CrossRefGoogle Scholar
  29. Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F., and Datta, S.K. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164, 371–378.CrossRefGoogle Scholar
  30. Wirth, J., Poletti, S., Aeschlimann, B., Yakandawala, N., Drosse, B., Osorio, S., Tohge, T., Fernie, A.R., Günther, D., Gruissem, W., et al. (2009). Rice endosperm iron biofortification by targeted and synergistic action of nicotianamine synthase and ferritin. Plant Biotechnol. J. 7, 631–644.PubMedCrossRefGoogle Scholar
  31. Zhao, F.-J., and Shewry, P.R. (2011). Recent developments in modifying crops and agronomic practice to improve human health. Food Policy 36, S94–S101.CrossRefGoogle Scholar
  32. Zheng, L., Cheng, Z., Ai, C., Jiang, X., Bei, X., Zheng, Y., Glahn, R.P., Welch, R.M., Miller, D.D., Lei, X.G., et al. (2010). Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PLoS One 5, e10190.PubMedCrossRefGoogle Scholar
  33. Zhu, C., Naqvi, S., Gomez-Galera, S., Pelacho, A.M., Capell, T., and Christou, P. (2007). Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci. 12, 548–555.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  • Sichul Lee
    • 1
  • You-Sun Kim
    • 2
  • Un Sil Jeon
    • 3
  • Yoon-Keun Kim
    • 2
  • Jan K. Schjoerring
    • 4
  • Gynheung An
    • 5
  1. 1.Department of Biological SciencesDartmouth CollegeHanoverUSA
  2. 2.Department of Life SciencePohang University of Science and TechnologyPohangKorea
  3. 3.Department of Internal MedicineKorea University Guro HospitalSeoulKorea
  4. 4.Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of Life SciencesUniversity of CopenhagenFrederiksberg CDenmark
  5. 5.Department of Plant Molecular Systems Biotechnology and Crop Biotech CenterKyung Hee UniversityYonginKorea

Personalised recommendations