Molecules and Cells

, Volume 33, Issue 3, pp 243–249 | Cite as

Effects of ginsenoside on pacemaker potentials of cultured interstitial cells of Cajal clusters from the small intestine of mice

  • Seungheon Han
  • Jung Soo Kim
  • Bo Kyoung Jung
  • Song Ee Han
  • Joo Hyun Nam
  • Young Kyu Kwon
  • Seung-Yeol Nah
  • Byung Joo Kim
Article

Abstract

Ginsenoside, one of the active ingredients of Panax ginseng, has a variety of physiological and pharmacological actions in various organs. However, little is known about the effects of ginsenosides on gastrointestinal (GI) motility. We studied the modulation of pacemaker potentials by ginsenoside in the interstitial cells of Cajal (ICCs) using the whole-cell patch clamp technique in the current clamp mode. Among ginsenosides, we investigated the effects of ginsenoside Rb1, Rg3 and Rf. While externally applied Rb1 and Rg3 had no effects on pacemaker potentials, Rf caused membrane depolarization. The application of flufenamic acid or niflumic acid abolished the generation of pacemaker potentials and inhibited the Rf-induced membrane depolarization. Membrane depolarization induced by Rf was not inhibited by intracellular application of guanosine 5′-[β-thio]diphosphate trilithium salt. Pretreatment with a Ca2+-free solution, thapsigargin, a Ca2+-ATPase inhibitor of the endoplasmic reticulum, U-73122, a phospholipase C inhibitor, or 2-APB, an IP3 receptor inhibitor, abolished the generation of pacemaker potentials and suppressed Rfinduced actions. However, treatment with chelerythrine and calphostin C, protein kinase C inhibitors, did not block Rf-induced effects on pacemaker potentials. These results suggest that ginsenoside Rf modulates the pacemaker activities of ICCs and therby regulates intestinal motility.

Keywords

gastrointestinal (GI) motility ginsenoside interstitial cells of Cajal (ICCs) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Attele, A.S., Wu, J.A., and Yuan, C.S. (1999). Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685–1693.PubMedCrossRefGoogle Scholar
  2. Chen, X. (1996). Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin. Exp. Pharmacol. Physiol. 2, 728–732.CrossRefGoogle Scholar
  3. Choi, S., Kim, H.J., Ko, Y.S., Jeong, S.W., Kim, Y.I., Simonds, W.F., Oh, J.W., and Nah, S.Y. (2001a). Gαq/11 coupled to mammal ian PLCβ3-like enzyme mediates the ginsenoside effect on Ca2+-activated Cl-current in the Xenopus oocytes. J. Biol. Chem. 276, 48797–48802.PubMedCrossRefGoogle Scholar
  4. Choi, S., Rho, S.H., Jung, S.Y., Kim, S.C., Park, C.S., and Nah, S.Y. (2001b). A novel activation of Ca2+-activated Cl channel in Xenopus oocytes by Ginseng saponins: evidence for the involvement of phospholipase C and intracellular Ca(2+) mobilization. Br. J. Pharmacol. 132, 641–648.PubMedCrossRefGoogle Scholar
  5. Furukawa, Y., Shiga, Y., Hanyu, N., Hashimoto, Y., Mukai, H., Nishikawa, K., and Nakamura, T. (1995). Effect of Chinese herbal medicine on gastrointestinal motility and bowel obstruction. Jpn. J. Gastroenterol. Surg. 28, 956–960.CrossRefGoogle Scholar
  6. Gillis, C.N. (1997). Panax ginseng pharmacology: a nitric oxide link? Biochem. Pharmacol. 54, 1–8.PubMedCrossRefGoogle Scholar
  7. Hashimoto, K., Satoh, K., Kase, Y., Ishige, A., Kubo, M., Sasaki, H., Nishikawa, S., Kurosawa, S., Yakabi, K., and Nakamura, T. (2001). Modulatory effect of aliphatic acid amides from Zanthoxylum piperitum on isolated gastrointestinal tract. Planta Med. 67, 179–181.PubMedCrossRefGoogle Scholar
  8. Huisinga, J.D., Thuneberg, L., Kluppel, M., Malysz, J., Mikkelsen, H.B., and Bernstein, A. (1995). W/kit gene required for interstitial cells of Cajal and for intestinal pacemaker activity. Nature 373, 347–352.CrossRefGoogle Scholar
  9. Huizinga, J.D., Zhu, Y., Ye, J., and Molleman, A. (2002). Highconductance chloride channels generate pacemaker currents in interstitial cells of Cajal. Gastroenterology 123, 1627–1636.PubMedCrossRefGoogle Scholar
  10. Jeong, S.M., Lee, J.H., Kim, S., Rhim, H., Lee, B.H., Kim, J.H., Oh, J.W., Lee, S.M., and Nah, S.Y. (2004). Ginseng saponins induce store-operated calcium entry in Xenopus oocytes. Br. J. Pharmacol. 142, 585–593.PubMedCrossRefGoogle Scholar
  11. Jun, J.Y., Choi, S., Yeum, C.H., Chang, I.Y., Park, C.K., Kim, M.Y., Kong, I.D., So, I., Kim, K.W., and You, H.J. (2004a). Noradrenaline inhibits pacemaker currents through stimulation of beta 1-adrenoceptors in cultured interstitial cells of Cajal from murine small intestine. Br. J. Pharmacol. 141, 670–677.PubMedCrossRefGoogle Scholar
  12. Jun, J.Y., Choi, S., Yeum, C.H., Chang, I.Y., You, H.J., Park, C.K., Kim, M.Y., Kong, I.D., Kim, M.J., Lee, K.P., et al. (2004b). Substance P induces inward current and regulates pacemaker currents through tachykinin NK1 receptor in cultured interstitial cells of Cajal of murine small intestine. Eur. J. Pharmacol. 495, 35–42.PubMedCrossRefGoogle Scholar
  13. Jun, J.Y., Choi, S., Chang, I.Y., Yoon, C.K., Jeong, H.G., Kong, I.D., So, I., Kim, K.W., and You, H.J. (2005). Deoxycholic acid inhibits pacemaker currents by activating ATP-dependent K+ channels through prostaglandin E2 in interstitial cells of Cajal from the murine small intestine. Br. J. Pharmacol. 144, 242–251.PubMedCrossRefGoogle Scholar
  14. Kim, Y.C., Kim, S.R., Markelonis, G.J., and Oh, T.H. (1998). Ginsenosides Rb1 and Rg3 protect cultured rat cortical cells from glutamate induced neurodegeneration. J. Neurosci. Res. 53, 426–432.PubMedCrossRefGoogle Scholar
  15. Kim, B.J., Lim, H.H., Yang, D.K., Jun, J.Y., Chang, I.Y., Park, C.S., So, I., Stanfield, P.R., and Kim, K.W. (2005). Melastatin-type transient receptor potential channel 7 is required for intestinal pacemaking activity. Gastroenterology 129, 1504–1517.PubMedCrossRefGoogle Scholar
  16. Kim, H.S., Parajuli, S.P., Yeum, C.H., Park, J.S., Jeong, H.S., So, I., Kim, K.W., Jun, J.Y., and Choi, S. (2007). Effects of ginseng total saponins on pacemaker currents of interstitial cells of Cajal from the small intestine of mice. Biol. Pharm. Bull. 30, 2037–2042.PubMedCrossRefGoogle Scholar
  17. Kim, S., Nah, S.Y., and Rhim, H. (2008). Neuroprotective effects of ginseng saponins against L-type Ca2+ channel-mediated cell death in rat cortical neurons. Biochem. Biophys. Res. Commun. 365, 399–405.PubMedCrossRefGoogle Scholar
  18. Kim, B.J., Chae, H., Kwon, Y.K., Choi, S., Jun, J.Y., Jeon, J.H., So, I., and Kim, S.J. (2010). Effects of imatinib mesylate in interstitial cells of Cajal from murine small intestine. Biol. Pharm. Bull. 33, 993–997.PubMedCrossRefGoogle Scholar
  19. Koh, S.D., Sanders, K.M., and Ward, S.M. (1998). Spontaneous electrical rhythmicity in cultured interstitial cells of cajal from the murine small intestine. J. Physiol. 513, 203–213.PubMedCrossRefGoogle Scholar
  20. Koh, S.D., Jun, J.Y., Kim, T.W., and Sanders, K.M. (2002). A Ca2+-inhibited non-selective cation conductance contributes to pacemaker currents in mouse interstitial cell of Cajal. J. Physiol. 540, 803–814.PubMedCrossRefGoogle Scholar
  21. Langton, P., Ward, S.M., Carl, A., Nerell, M.A., and Sanders, K.M. (1989). Spontaneous electrical activity of interstitial cells of Cajal isolated from canine proximal colon. Proc. Natl. Acad. Sci. USA 86, 7280–7284.PubMedCrossRefGoogle Scholar
  22. Murata, P., Hayakawa, T., Satoh, K., Kase, Y., Ishige, A., and Sasaki, H. (2001). Effects of Dai-kenchu-to, a herbal medicine, on uterine and intestinal motility. Phytother. Res. 23, 29–41.Google Scholar
  23. Nah, S.Y. (1997). Ginseng: recent advances and trends. Korean J. Ginseng. Sci. 21, 1–12.Google Scholar
  24. Nah, S.Y., Park, H.J., and McCleskey, E.W. (1995). A trace component of ginseng that inhibits Ca2+ channels through a pertussis toxin-sensitive G protein. Proc. Natl. Acad. Sci. USA 92, 8739–8743.PubMedCrossRefGoogle Scholar
  25. Ordog, T., Ward, S.M., and Sanders, K.M. (1999). Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J. Physiol. 518, 257–269.PubMedCrossRefGoogle Scholar
  26. Saito, H., Tsuchiya, M., Naka, S., and Takagi, K. (1977). Effects of Panax Ginseng root on conditioned avoidance response in rats. J. Pharmacol. Soc. 27, 509–516.Google Scholar
  27. Sanders, K.M. (1996). A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111, 492–515.PubMedCrossRefGoogle Scholar
  28. So, K.Y., Kim, S.H., Sohn, H.M., Choi, S.J., Parajuli, S.P., Choi, S., Yeum, C.H., Yoon, P.J., and Jun, J.Y. (2009). Carbachol regulates pacemaker activities in cultured interstitial cells of Cajal from the mouse small intestine. Mol. Cells 27, 525–531.PubMedCrossRefGoogle Scholar
  29. Szurszewsik, J.H. (1987). Electrical basis for gastrointestinal motility; in Prostaglandins and the Gastrointestinal Tract. L.R. Johnson, ed. (Raven Press New York), p. 383.Google Scholar
  30. Torihashi, S., Nishi, K., Tokutomi, Y., Nishi, T., Ward, S., and Sanders, K.M. (1999). Blockade of kit signaling induces transdifferentiation of interstitial cells of cajal to a smooth muscle phenotype. Gastroenterology 117, 140–148.PubMedCrossRefGoogle Scholar
  31. Tokutomi, N., Maeda, H., Tokutomi, Y., Sato, D., Sugita, M., Nishigawa, S., Nakao, J., Imamura, T., and Nishi, K. (1995). Rhythmic Cl current and physiological roles of the intestinal c-kit-positive cells. Pflügers Arch. 431, 169–177.PubMedCrossRefGoogle Scholar
  32. Ward, S.M., Burns, A.J., Torihashi, S., and Sanders, K.M. (1994). Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J. Physiol. 480, 91–102.PubMedGoogle Scholar
  33. Yoshimura, H., Watanabe, K., and Ogawa, N. (1998). Psychotropic effects of ginseng saponins on agonistic behavior between resident and intruder mice. Eur. J. Pharmacol. 146, 291–297.CrossRefGoogle Scholar
  34. Zhu, M.H., Kim, T.W., Ro, S., Yan, W., Ward, S.M., Koh, S.D., and Sanders, K.M. (2009). A Ca2+-activated Cl conductance in interstitial cells of Cajal linked to slow wave currents and pacemaker activity. J. Physiol. 587, 4905–4918.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  • Seungheon Han
    • 1
  • Jung Soo Kim
    • 1
  • Bo Kyoung Jung
    • 1
  • Song Ee Han
    • 1
  • Joo Hyun Nam
    • 2
  • Young Kyu Kwon
    • 1
  • Seung-Yeol Nah
    • 3
  • Byung Joo Kim
    • 1
  1. 1.Division of Longevity and Biofunctional MedicinePusan National University School of Korean MedicineYangsanKorea
  2. 2.Department of PhysiologyDongguk University College of MedicineKyungjuKorea
  3. 3.Department of PhysiologyKonkuk University College of Veterinary MedicineSeoulKorea

Personalised recommendations