Molecules and Cells

, Volume 34, Issue 5, pp 481–493

Thymic epithelial requirement for γδ T cell development revealed in the cell ablation transgenic system with TSCOT promoter

  • Gwanghee Lee
  • Ki Yeon Kim
  • Cheong-Hee Chang
  • Moon Gyo Kim


In order to investigate the role of thymic epithelial cell (TEC) subsets during T-cell development, we established a new transgenic system, enabling inducible cell-specific ablation as well as marking the TEC subsets using bicistronic bacterial nitroreductase and EGFP genes. Two different lengths of the TSCOT promoter in transgenic mice, named 3.1T-NE and 9.1T-NE, drive EGFP expression into TECs. In adult life, EGFP expression was located in the medulla with a smaller 3.1 kb TSCOT promoter, while it was maintained in the cortex with a 9.1 kb promoter, suggesting putative TEC specific as well as compartment specific cis elements within two promoters. Nitroreductase induced cell death was specific without bystander killing upon the treatment of prodrugs such as nitrofurantoin and metronidazol. The degree of cell death was dependent on the dose of the prodrug in the cell and the fetal thymic organ cultures (FTOCs). Fetal thymic stromal populations were analyzed based on the expression levels of EpCAM, MHCII, CDR1 and/or UEA-1. EGFP expression patterns varied among subsets indicating the differential TSCOT promoter activity in each TEC subset. Prodrug treatment in FTOCs reduced the numbers of total and subsets of thymocytes. A CD4+CD8+ double positive cell population was highly susceptible in both transgenic lines. Surprisingly, there was a distinct reduction in γδ T cell population only in the 9.1T-NE thymus, indicating that they require a NTREGFP expressing TEC population. Therefore, these results support a division of labor within TEC subsets for the αβ and γδ lineage specification.


EGFP fetal thymic organ culture gamma delta T cell thymic epithelial cell transgenic mouse 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahn, S., Lee, G., Yang, S.J., Lee, D., Lee, S., Shin, H.S., Kim, M.C., Lee, K.N., Palmer, D.C., Theoret, M.R., et al. (2008). TSCOT+ thymic epithelial cell-mediated sensitive CD4 tolerance by direct presentation. PLoS Biol. 6, e191.PubMedCrossRefGoogle Scholar
  2. Alves, N.L., Huntington, N.D., Mention, J.J., Richard-Le Goff, O., and Di Santo, J.P. (2010). Cutting edge: a thymocyte-thymic epithelial cell cross-talk dynamically regulates intrathymic IL-7 expression in vivo. J. Immunol. 184, 5949–5953.PubMedCrossRefGoogle Scholar
  3. Anderson, G., and Jenkinson, E.J. (2007). Fetal thymus organ culture. CSH Protoc. 2007, pdb prot4808.PubMedGoogle Scholar
  4. Anderson, G., Jenkinson, E.J., Moore, N.C., and Owen, J.J. (1993). MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73.PubMedCrossRefGoogle Scholar
  5. Anderson, G., Jenkinson, E.J., and Rodewald, H.R. (2009). A roadmap for thymic epithelial cell development. Eur J. Immunol. 39, 1694–1699.PubMedCrossRefGoogle Scholar
  6. Anderson, G., and Takahama, Y. (2012). Thymic epithelial cells; working class heroes for T cell development and repertoire selection. Trends Immunol. 33, 256–263.PubMedCrossRefGoogle Scholar
  7. Bailey, S.M., and Hart, I.R. (1997). Nitroreductase activation of CB1954—an alternative ’suicide’ gene system. Gene Ther. 4, 80–81.PubMedCrossRefGoogle Scholar
  8. Bailey, S.M., Knox, R.J., Hobbs, S.M., Jenkins, T.C., Mauger, A.B., Melton, R.G., Burke, P.J., Connors, T.A., and Hart, I.R. (1996). Investigation of alternative prodrugs for use with E. coli nitroreductase in ’suicide gene’ approaches to cancer therapy. Gene Ther. 3, 1143–1150.PubMedGoogle Scholar
  9. Balciunaite, G., Ceredig, R., Fehling, H.J., Zuniga-Pflucker, J.C., and Rolink, A.G. (2005). The role of Notch and IL-7 signaling in early thymocyte proliferation and differentiation. Eur. J. Immunol. 35, 1292–1300.PubMedCrossRefGoogle Scholar
  10. Barbee, S.D., Woodward, M.J., Turchinovich, G., Mention, J.J., Lewis, J.M., Boyden, L.M., Lifton, R.P., Tigelaar, R., and Hayday, A.C. (2011). Skint-1 is a highly specific, unique selecting component for epidermal T cells. Proc. Natl. Acad. Sci. USA 108, 3330–3335.PubMedCrossRefGoogle Scholar
  11. Blackburn, C.C., and Manley, N.R. (2004). Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289.PubMedCrossRefGoogle Scholar
  12. Bowlus, C.L., Ahn, J., Chu, T., and Gruen, J.R. (1999). Cloning of a novel MHC-encoded serine peptidase highly expressed by cortical epithelial cells of the thymus. Cell Immunol. 196, 80–86.PubMedCrossRefGoogle Scholar
  13. Boyden, L.M., Lewis, J.M., Barbee, S.D., Bas, A., Girardi, M., Hayday, A.C., Tigelaar, R.E., and Lifton, R.P. (2008). Skint1, the prototype of a newly identified immunoglobulin superfamily gene cluster, positively selects epidermal gammadelta T cells. Nat. Genet. 40, 656–662.PubMedCrossRefGoogle Scholar
  14. Bridgewater, J.A., Knox, R.J., Pitts, J.D., Collins, M.K., and Springer, C.J. (1997). The bystander effect of the nitroreductase/CB1954 enzyme/prodrug system is due to a cell-permeable metabolite. Hum. Gene Ther. 8, 709–717.PubMedCrossRefGoogle Scholar
  15. Cahill, R.N., Kimpton, W.G., Washington, E.A., Holder, J.E., and Cunningham, C.P. (1999). The ontogeny of T cell recirculation during foetal life. Semin. Immunol. 11, 105–114.PubMedCrossRefGoogle Scholar
  16. Canelles, M., Park, M.L., Schwartz, O.M., and Fowlkes, B.J. (2003) The influence of the thymic environment on the CD4-versus-CD8 T lineage decision. Nat. Immunol. 4, 756–764.PubMedCrossRefGoogle Scholar
  17. Chen, C., Kim, M.G., Soo Lyu, M., Kozak, C.A., Schwartz, R.H., and Flomerfelt, F.A. (2000). Characterization of the mouse gene, human promoter and human cDNA of TSCOT reveals strong interspecies homology. Biochim. Biophys. Acta 1493, 159–169.PubMedCrossRefGoogle Scholar
  18. Ciofani, M., and Zuniga-Pflucker, J.C. (2010). Determining gammadelta versus alphas T cell development. Nat. Rev. Immunol. 10, 657–663.PubMedGoogle Scholar
  19. Crompton, T., Outram, S.V., and Hager-Theodorides, A.L. (2007). Sonic hedgehog signalling in T-cell development and activation. Nat. Rev. Immunol. 7, 726–735.PubMedCrossRefGoogle Scholar
  20. Dachs, G.U., Dougherty, G.J., Stratford, I.J., and Chaplin, D.J. (1997). Targeting gene therapy to cancer: a review. Oncol. Res. 9, 313–325.PubMedGoogle Scholar
  21. Gray, D.H., Chidgey, A.P., and Boyd, R.L. (2002). Analysis of thymic stromal cell populations using flow cytometry. J. Immunol. Methods 260, 15–28.PubMedCrossRefGoogle Scholar
  22. Gray, D.H., Seach, N., Ueno, T., Milton, M.K., Liston, A., Lew, A.M., Goodnow, C.C., and Boyd, R.L. (2006). Developmental kinetics, turnover, and stimulatory capacity of thymic epithelial cells. Blood 108, 3777–3785.PubMedCrossRefGoogle Scholar
  23. Jenkinson, E.J., and Owen, J.J. (1990). T-cell differentiation in thymus organ cultures. Semin. Immunol. 2, 51–58.PubMedGoogle Scholar
  24. Jenkinson, E.J., and Anderson, G. (1994). Fetal thymic organ cultures. Curr. Opin. Immunol. 6, 293–297.PubMedCrossRefGoogle Scholar
  25. Jo, D., Lyu, M.S., Cho, E.G., Park, D., Kozak, C.A., and Kim, M.G. (2001). Identification and genetic mapping of the mouse Fkbp9 gene encoding a new member of FK506-binding protein family. Mol. Cells 12, 272–275.PubMedGoogle Scholar
  26. Kim, M.G., Chen, C., Flomerfelt, F.A., Germain, R.N., and Schwartz, R.H. (1998). A subtractive PCR-based cDNA library made from fetal thymic stromal cells. J. Immunol. Methods 213, 169–182.PubMedCrossRefGoogle Scholar
  27. Kim, M.G., Flomerfelt, F.A., Lee, K.N., Chen, C., and Schwartz, R.H. (2000a). A putative 12 transmembrane domain cotransporter expressed in thymic cortical epithelial cells. J. Immunol. 164, 3185–3192.PubMedGoogle Scholar
  28. Kim, M.G., Lee, G., Lee, S.K., Lolkema, M., Yim, J., Hong, S.H., and Schwartz, R.H. (2000b). Epithelial cell-specific laminin 5 is required for survival of early thymocytes. J. Immunol. 165, 192–201.PubMedGoogle Scholar
  29. Kirchner, J., Forbush, K.A., and Bevan, M.J. (2001). Identification and characterization of thymus LIM protein: targeted disruption reduces thymus cellularity. Mol. Cell. Biol. 21, 8592–8604.PubMedCrossRefGoogle Scholar
  30. Ladi, E., Yin, X., Chtanova, T., and Robey, E.A. (2006). Thymic microenvironments for T cell differentiation and selection. Nat. Immunol. 7, 338–343.PubMedCrossRefGoogle Scholar
  31. Laky, K., and Fowlkes, B.J. (2008). Notch signaling in CD4 and CD8 T cell development. Curr. Opin. Immunol. 20, 197–202.PubMedCrossRefGoogle Scholar
  32. Laky, K., Fleischacker, C., and Fowlkes, B.J. (2006). TCR and Notch signaling in CD4 and CD8 T-cell development. Immunol. Rev. 209, 274–283.PubMedCrossRefGoogle Scholar
  33. Lal, S., Lauer, U.M., Niethammer, D., Beck, J.F., and Schlegel, P.G. (2000). Suicide genes: past, present and future perspectives. Immunol. Today 21, 48–54.PubMedCrossRefGoogle Scholar
  34. Laufer, T.M. (2008) Tolerance to self: which cells kill? PLoS Biol. 6, e241.PubMedCrossRefGoogle Scholar
  35. Laufer, T.M., DeKoning, J., Markowitz, J.S., Lo, D., and Glimcher, L.H. (1996). Unopposed positive selection and autoreactivity in mice expressing class II MHC only on thymic cortex. Nature 383, 81–85.PubMedCrossRefGoogle Scholar
  36. Laufer, T.M., Glimcher, L.H., and Lo, D. (1999). Using thymus anatomy to dissect T cell repertoire selection. Semin. Immunol. 11, 65–70.PubMedCrossRefGoogle Scholar
  37. Lee, C., Kim, M.G., Jeon, S.H., Park, D.E., Park, S.D., and Seong, R.H. (1998). Two species of mRNAs for the fyn proto-oncogene are produced by an alternative polyadenylation. Mol. Cells 8, 746–749.PubMedGoogle Scholar
  38. Lee, G., Kim, M.G., Yim, J.B., and Hong, S.H. (2001). Alternative transcriptional initiation and splicing of mouse Lamc2 message. Mol. Cells 12, 380–390.PubMedGoogle Scholar
  39. Moore, T.A., von Freeden-Jeffry, U., Murray, R., and Zlotnik, A. (1996). Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 -/- mice. J. Immunol. 157, 2366–2373.PubMedGoogle Scholar
  40. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353.PubMedCrossRefGoogle Scholar
  41. Narayan, K., and Kang, J. (2007). Molecular events that regulate alphabeta versus gammadelta T cell lineage commitment: old suspects, new players and different game plans. Curr. Opin. Immunol. 19, 169–175.PubMedCrossRefGoogle Scholar
  42. Oosterwegel, M.A., Haks, M.C., Jeffry, U., Murray, R., and Kruisbeek, A.M. (1997). Induction of TCR gene rearrangements in uncommitted stem cells by a subset of IL-7 producing, MHC class-II-expressing thymic stromal cells. Immunity 6, 351–360.PubMedCrossRefGoogle Scholar
  43. Park, D. (1997). Cloning, sequencing, and overexpression of SH2/SH3 adaptor protein Nck from mouse thymus. Mol. Cells 7, 231–236.PubMedGoogle Scholar
  44. Park, J.H., Yu, Q., Erman, B., Appelbaum, J.S., Montoya-Durango, D., Grimes, H.L., and Singer, A. (2004). Suppression of IL7R alpha transcription by IL-7 and other prosurvival cytokines: a novel mechanism for maximizing IL-7-dependent T cell survival. Im munity 21, 289–302.Google Scholar
  45. Park, J.H., Adoro, S., Guinter, T., Erman, B., Alag, A.S., Catalfamo, M., Kimura, M.Y., Cui, Y., Lucas, P.J., Gress, R.E., et al. (2010). Signaling by intrathymic cytokines, not T cell antigen receptors, specifies CD8 lineage choice and promotes the differentiation of cytotoxic-lineage T cells. Nat. Immunol. 11, 257–264.PubMedCrossRefGoogle Scholar
  46. Petrie, H.T. (2003). Cell migration and the control of post-natal Tcell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866.PubMedCrossRefGoogle Scholar
  47. Petrie, H.T., and Zuniga-Pflucker, J.C. (2007). Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679.PubMedCrossRefGoogle Scholar
  48. Roberts, N.A., White, A.J., Jenkinson, W.E., Turchinovich, G., Nakamura, K., Withers, D.R., McConnell, F.M., Desanti, G.E., Benezech, C., Parnell, S.M., et al. (2012). Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36, 427–437.PubMedCrossRefGoogle Scholar
  49. Rodewald, H.R. (2008).Thymus organogenesis. Annu. Rev. Immunol. 26, 355–388.PubMedCrossRefGoogle Scholar
  50. Shakib, S., Desanti, G.E., Jenkinson, W.E., Parnell, S.M., Jenkinson, E.J., and Anderson, G. (2009). Checkpoints in the development of thymic cortical epithelial cells. J. Immunol. 182, 130–137.PubMedCrossRefGoogle Scholar
  51. Takahama, Y. (2006). Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135.PubMedCrossRefGoogle Scholar
  52. Takahama, Y., Nitta, T., Mat Ripen, A., Nitta, S., Murata, S., and Tanaka, K. (2010). Role of thymic cortex-specific self-peptides in positive selection of T cells. Semin. Immunol. 22, 287–293.PubMedCrossRefGoogle Scholar
  53. Tomaru, U., Ishizu, A., Murata, S., Miyatake, Y., Suzuki, S., Takahashi, S., Kazamaki, T., Ohara, J., Baba, T., Iwasaki, S., et al. (2009). Exclusive expression of proteasome subunit ta5t in the human thymic cortex. Blood 113, 5186–5191.Google Scholar
  54. White, A., Jenkinson, E., and Anderson, G. (2008). Reaggregate thymus cultures. J. Vis. Exp. 18, 905.PubMedGoogle Scholar
  55. Wong, G.W., and Zuniga-Pflucker, J.C. (2010). gammadelta and alphabeta T cell lineage choice: resolution by a stronger sense of being. Semin. Immunol. 22, 228–236.PubMedCrossRefGoogle Scholar
  56. Yang, S.J., Ahn, S., Park, C.S., Choi, S., and Kim, M.G. (2005). Identifying subpopulations of thymic epithelial cells by flow cytometry using a new specific thymic epithelial marker, Ly110. J. Immunol. Methods 297, 265–270.PubMedCrossRefGoogle Scholar
  57. Yang, S.J., Ahn, S., Park, C.S., Holmes, K.L., Westrup, J., Chang, C.H., and Kim, M.G. (2006). The quantitative assessment of MHC II on thymic epithelium: implications in cortical thymocyte development. Int. Immunol. 18, 729–739.PubMedCrossRefGoogle Scholar
  58. Yazawa, K., Fisher, W.E., and Brunicardi, F.C. (2002). Current progress in suicide gene therapy for cancer. World J. Surg. 26, 783–789.PubMedCrossRefGoogle Scholar
  59. Zamisch, M., Moore-Scott, B., Su, D.M., Lucas, P.J., Manley, N., and Richie, E.R. (2005). Ontogeny and regulation of IL-7-expressing thymic epithelial cells. J. Immunol. 174, 60–67.PubMedGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  • Gwanghee Lee
    • 2
    • 4
  • Ki Yeon Kim
    • 1
  • Cheong-Hee Chang
    • 3
  • Moon Gyo Kim
    • 1
  1. 1.Department of Biological SciencesInha UniversityIncheonKorea
  2. 2.Department of Cell Biology and PhysiologyWashington University School of MedicineSt LouisUSA
  3. 3.Department of Microbiology and ImmunologyThe University of Michigan Medical SchoolAnn ArborUSA
  4. 4.Department of Physiological ChemistryGenentechSouth San FranciscoUSA

Personalised recommendations