Molecules and Cells

, Volume 34, Issue 1, pp 1–5

Chromatin loop formation in the β-globin locus and its role in globin gene transcription

Minireview

Abstact

Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian β-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the β-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.

Keywords

β-globin locus chromatin loops LCR transcription 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brand, M., Ranish, J.A., Kummer, N.T., Hamilton, J., Igarashi, K., Francastel, C., Chi, T.H., Crabtree, G.R., Aebersold, R., and Groudine, M. (2004). Dynamic changes in transcription factor complexes during erythroid differentiation revealed by quantitative proteomics. Nat. Struct. Mol. Biol. 11, 73–80.PubMedCrossRefGoogle Scholar
  2. Bultman, S.J., Gebuhr, T.C., and Magnuson, T. (2005). A Brg1 mutation that uncouples ATPase activity from chromatin remodeling reveals an essential role for SWI/SNF-related complexes in β-globin expression and erythroid development. Genes Dev. 19, 2849–2861.PubMedCrossRefGoogle Scholar
  3. Bushey, A.M., Dorman, E.R., and Corces, V.G. (2008). Chromatin insulators: regulatory mechanisms and epigenetic inheritance. Mol. Cell 32, 1–9.PubMedCrossRefGoogle Scholar
  4. Cantor, A.B., and Orkin, S.H. (2002). Transcriptional regulation of erythropoiesis: an affair involving multiple partners. Oncogene 21, 3368–3376.PubMedCrossRefGoogle Scholar
  5. Carter, D., Chakalova, L., Osborne, C.S., Dai, Y., and Fraser, P. (2002). Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32, 623–626.PubMedCrossRefGoogle Scholar
  6. Chien, R., Zeng, W., Kawauchi, S., Bender, M.A., Santos, R., Gregson, H.C., Schmiesing, J.A., Newkirk, D.A., Kong, X., Ball, A.R., Jr., et al. (2011). Cohesin mediates chromatin interactions that regulate mammalian b-globin expression. J. Biol. Chem. 286, 17870–17878.PubMedCrossRefGoogle Scholar
  7. Dean, A. (2006). On a chromosome far, far away: LCRs and gene regulation. Trends Genet. 22, 38–45.PubMedCrossRefGoogle Scholar
  8. Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311.PubMedCrossRefGoogle Scholar
  9. Dostie, J., Richmond, T.A., Arnaout, R.A., Selzer, R.R., Lee, W.L., Honan, T.A., Rubio, E.D., Krumm, A., Lamb, J., Nusbaum, C., et al. (2006). Chromosome conformation capture carbon copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309.PubMedCrossRefGoogle Scholar
  10. Drissen, R., Palstra, R.J., Gillemans, N., Splinter, E., Grosveld, F., Philipsen, S., and de Laat, W. (2004). The active spatial organization of the β-globin locus requires the transcription factor EKLF. Genes Dev. 18, 2485–2490.PubMedCrossRefGoogle Scholar
  11. Du, M.J., Lv, X., Hao, D.L., Zhao, G.W., Wu, X.S., Wu, F., Liu, D.P., and Liang, C.C. (2008). MafK/NF-E2 p18 is required for β-globin genes activation by mediating the proximity of LCR and active bglobin genes in MEL cell line. Int. J. Biochem. Cell. Biol. 40, 1481–1493.PubMedCrossRefGoogle Scholar
  12. Ethier, S.D., Miura, H., and Dostie, J. (2012). Discovering genome regulation with 3C and 3C-related technologies. Biochim. Biophys. Acta 1819, 401–410.PubMedCrossRefGoogle Scholar
  13. Fang, X., Xiang, P., Yin, W., Stamatoyannopoulos, G., and Li, Q. (2007). Cooperativeness of the higher chromatin structure of the b-globin locus revealed by the deletion mutations of DNase I hypersensitive site 3 of the LCR. J. Mol. Biol. 365, 31–37.PubMedCrossRefGoogle Scholar
  14. Francastel, C., Magis, W., and Groudine, M. (2001). Nuclear relocation of a transactivator subunit precedes target gene activation. Proc. Natl. Acad. Sci. USA 98, 12120–12125.PubMedCrossRefGoogle Scholar
  15. Gui, C.Y., and Dean, A. (2003). A major role for the TATA box in recruitment of chromatin modifying complexes to a globin gene promoter. Proc. Natl. Acad. Sci. USA 100, 7009–7014.PubMedCrossRefGoogle Scholar
  16. Hou, C., Dale, R., and Dean, A. (2010). Cell type specificity of chromatin organization mediated by CTCF and cohesin. Proc. Natl. Acad. Sci. USA 107, 3651–3656.PubMedCrossRefGoogle Scholar
  17. Kadauke, S., and Blobel, G.A. (2009). Chromatin loops in gene regulation. Biochim. Biophys. Acta 1789, 17–25.PubMedCrossRefGoogle Scholar
  18. Kiefer, C.M., Lee, J., Hou, C., Dale, R.K., Lee, Y.T., Meier, E.R., Miller, J.L., and Dean, A. (2011). Distinct Ldb1/NLI complexes orchestrate γ-globin repression and reactivation through ETO2 in human adult erythroid cells. Blood 118, 6200–6208.PubMedCrossRefGoogle Scholar
  19. Kim, S.I., Bultman, S.J., Jing, H., Blobel, G.A., and Bresnick, E.H. (2007). Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol. Cell. Biol. 27, 4551–4565.PubMedCrossRefGoogle Scholar
  20. Kim, S.I., Bultman, S.J., Kiefer, C.M., Dean, A., and Bresnick, E.H. (2009). BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc. Natl. Acad. Sci. USA 106, 2259–2264.PubMedCrossRefGoogle Scholar
  21. Kim, T.K., Hemberg, M., Gray, J.M., Costa, A.M., Bear, D.M., Wu, J., Harmin, D.A., Laptewicz, M., Barbara-Haley, K., Kuersten, S., et al. (2010). Widespread transcription at neuronal activityregulated enhancers. Nature 465, 182–187.PubMedCrossRefGoogle Scholar
  22. Kim, Y.W., Kim, S., Kim, C.G., and Kim, A. (2011). The distinctive roles of erythroid specific activator GATA-1 and NF-E2 in transcription of the human fetal γ-globin genes. Nucleic Acids Res. 39, 6944–6955.PubMedCrossRefGoogle Scholar
  23. Kooren, J., Palstra, R.J., Klous, P., Splinter, E., von Lindern, M., Grosveld, F., and de Laat, W. (2007). β-globin active chromatin hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J. Biol. Chem. 282, 16544–16552.PubMedCrossRefGoogle Scholar
  24. Lee, H.Y., Johnson, K.D., Fujiwara, T., Boyer, M.E., Kim, S.I., and Bresnick, E.H. (2009). Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol. Cell 36, 984–995.PubMedCrossRefGoogle Scholar
  25. Lee, H.Y., Johnson, K.D., Boyer, M.E., and Bresnick, E.H. (2011). Relocalizing genetic loci into specific subnuclear neighborhoods. J. Biol. Chem. 286, 18834–18844.PubMedCrossRefGoogle Scholar
  26. Mitchell, J.A., and Fraser, P. (2008). Transcription factories are nuclear subcompartments that remain in the absence of transcription. Genes Dev. 22, 20–25.PubMedCrossRefGoogle Scholar
  27. Orom, U.A., Derrien, T., Beringer, M., Gumireddy, K., Gardini, A., Bussotti, G., Lai, F., Zytnicki, M., Notredame, C., Huang, Q., et al. (2010). Long noncoding RNAs with enhancer-like function in human cells. Cell 143, 46–58.PubMedCrossRefGoogle Scholar
  28. Palstra, R.J., Tolhuis, B., Splinter, E., Nijmeijer, R., Grosveld, F., and de Laat, W. (2003). The β-globin nuclear compartment in development and erythroid differentiation. Nat. Genet. 35, 190–194.PubMedCrossRefGoogle Scholar
  29. Palstra, R.J., Simonis, M., Klous, P., Brasset, E., Eijkelkamp, B., and de Laat, W. (2008). Maintenance of long-range DNA interactions after inhibition of ongoing RNA polymerase II transcription. PLoS One 3, e1661.PubMedCrossRefGoogle Scholar
  30. Patrinos, G.P., de Krom, M., de Boer, E., Langeveld, A., Imam, A.M., Strouboulis, J., de Laat, W., and Grosveld, F.G. (2004). Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18, 1495–1509.PubMedCrossRefGoogle Scholar
  31. Ragoczy, T., Bender, M.A., Telling, A., Byron, R., and Groudine, M. (2006). The locus control region is required for association of the murine b-globin locus with engaged transcription factories during erythroid maturation. Genes Dev. 20, 1447–1457.PubMedCrossRefGoogle Scholar
  32. Song, S.-H., Hou, C., and Dean, A. (2007). A positive role for NLI/Ldb1 in long-range b-globin locus control region function. Mol. Cell 28, 810–822.PubMedCrossRefGoogle Scholar
  33. Song, S.-H., Kim, A., Ragoczy, T., Bender, M.A., Groudine, M., and Dean, A. (2010). Multiple functions of Ldb1 required for β-globin activation during erythroid differentiation. Blood 116, 2356–2364.PubMedCrossRefGoogle Scholar
  34. Splinter, E., Heath, H., Kooren, J., Palstra, R.J., Klous, P., Grosveld, F., Galjart, N., and de Laat, W. (2006). CTCF mediates longrange chromatin looping and local histone modification in the bglobin locus. Genes Dev. 20, 2349–2354.PubMedCrossRefGoogle Scholar
  35. Tolhuis, B., Palstra, R.J., Splinter, E., Grosveld, F., and de Laat, W. (2002). Looping and interaction between hypersensitive sites in the active b-globin locus. Mol. Cell 10, 1453–1465.PubMedCrossRefGoogle Scholar
  36. Vakoc, C.R., Letting, D.L., Gheldof, N., Sawado, T., Bender, M.A., Groudine, M., Weiss, M.J., Dekker, J., and Blobel, G.A. (2005). Proximity among distant regulatory elements at the b-globin locus requires GATA-1 and FOG-1. Mol. Cell 17, 453–462.PubMedCrossRefGoogle Scholar
  37. Wadman, I.A., Osada, H., Grutz, G.G., Agulnick, A.D., Westphal, H., Forster, A., and Rabbitts, T.H. (1997). The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16, 3145–3157.PubMedCrossRefGoogle Scholar
  38. Wendt, K.S., and Peters, J.M. (2009). How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17, 201–214.PubMedCrossRefGoogle Scholar
  39. Zhao, H., and Dean, A. (2004). An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res. 32, 4903–4919.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  1. 1.Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanKorea
  2. 2.Laboratory of Cellular and Developmental BiologyNIDDK, NIHBethesdaUSA

Personalised recommendations