Advertisement

Molecules and Cells

, Volume 33, Issue 4, pp 415–422 | Cite as

Ectopic expression of Capsicum-specific cell wall protein Capsicum annuum senescence-delaying 1 (CaSD1) delays senescence and induces trichome formation in Nicotiana benthamiana

  • Eunyoung Seo
  • Seon-In Yeom
  • SungHwan Jo
  • Heejin Jeong
  • Byoung-Cheorl Kang
  • Doil ChoiEmail author
Article

Abstract

Secreted proteins are known to have multiple roles in plant development, metabolism, and stress response. In a previous study to understand the roles of secreted proteins, Capsicum annuum secreted proteins (CaS) were isolated by yeast secretion trap. Among the secreted proteins, we further characterized Capsicum annuum senescence-delaying 1 (CaSD1), a gene encoding a novel secreted protein that is present only in the genus Capsicum. The deduced CaSD1 contains multiple repeats of the amino acid sequence KPPIHNHKPTDYDRS. Interestingly, the number of repeats varied among cultivars and species in the Capsicum genus. CaSD1 is constitutively expressed in roots, and Agrobacterium-mediated transient overexpression of CaSD1 in Nicotiana benthamiana leaves resulted in delayed senescence with a dramatically increased number of trichomes and enlarged epidermal cells. Furthermore, senescence- and cell division-related genes were differentially regulated by CaSD1-overexpressing plants. These observations imply that the pepper-specific cell wall protein CaSD1 plays roles in plant growth and development by regulating cell division and differentiation.

Keywords

cell wall protein Nicotiana benthamiana pepper (Capsicum annuum L.) senescence trichome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, G.K., Jwa, N.S., Lebrun, M.H., Job, D., and Rakwal, R. (2010). Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10, 799–827.PubMedCrossRefGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J.H., Zhang, Z., Miller, W., and Lipman, D.J. (1997). Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedCrossRefGoogle Scholar
  3. Baumberger, N., Ringli, C., and Keller, B. (2001). The chimeric leucinerich repeat/extensin cell wall protein LRX1 is required for root hair morphogenesis in Arabidopsis thaliana. Gen. Dev. 15, 1128–1139.CrossRefGoogle Scholar
  4. Buchanan-Wollaston, V., Earl, S., Harrison, E., Mathas, E., Navabpour, S., Page, T., and Pink, D. (2003). The molecular analysis of leaf senescence—a genomics approach. Plant Biotechnol. J. 1, 3–22.PubMedCrossRefGoogle Scholar
  5. Buchanan-Wollaston, V., Page, T., Harrison, E., Breeze, E., Lim, P.O., Nam, H.G., Lin, J.F., Wu, S.H., Swidzinski, J., Ishizaki, K., et al. (2005). Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis. Plant J. 42, 567–585.PubMedCrossRefGoogle Scholar
  6. Cho, H.T., and Cosgrove, D.J. (2000). Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97, 9783–9788.PubMedCrossRefGoogle Scholar
  7. Cosgrove, D.J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850–861.PubMedCrossRefGoogle Scholar
  8. Davis, S.J., and Vierstra, R.D. (1998). Soluble, highly fluorescent variants of green fluorescent protein (GFP) for use in higher plants. Plant Mol. Biol. 36, 521–528.PubMedCrossRefGoogle Scholar
  9. Dewitte, W., Scofield, S., Alcasabas, A.A., Maughan, S.C., Menges, M., Braun, N., Collins, C., Nieuwland, J., Prinsen, E., Sundaresan, V., et al. (2007). Arabidopsis CYCD3 D-type cyclins link cell proliferation and endocycles and are rate-limiting for cytokinin responses. Proc. Natl. Acad. Sci. USA 104, 14537–14542.PubMedCrossRefGoogle Scholar
  10. Fleming, A.J., McQueenMason, S., Mandel, T., and Kuhlemeier, C. (1997). Induction of leaf primordia by the cell wall protein expansion. Science 276, 1415–1418.CrossRefGoogle Scholar
  11. Hematy, K., Cherk, C., and Somerville, S. (2009). Host-pathogen warfare at the plant cell wall. Curr. Opin. Plant Biol. 12, 406–413.PubMedCrossRefGoogle Scholar
  12. Huckelhoven, R. (2007). Cell wall-associated mechanisms of disease resistance and susceptibility. Annu. Rev. Phytopathol. 45, 101–127.PubMedCrossRefGoogle Scholar
  13. Hulskamp, M. (2004). Plant trichomes: a model for cell differen tiation. Nat. Rev. Mol. Cell Biol. 5, 471–480.PubMedCrossRefGoogle Scholar
  14. Hulskamp, M., Misra, S., and Jurgens, G. (1994). Genetic dissection of trichome cell development in Arabidopsis. Cell 76, 555–566.PubMedCrossRefGoogle Scholar
  15. Humphrey, T.V., Bonetta, D.T., and Goring, D.R. (2007). Sentinels at the wall: cell wall receptors and sensors. New Phytol. 176, 7–21.PubMedCrossRefGoogle Scholar
  16. Ishida, T., Kurata, T., Okada, K., and Wada, T. (2008). A genetic regulatory network in the development of trichomes and root hairs. Annu. Rev. Plant Biol. 59, 365–386.PubMedCrossRefGoogle Scholar
  17. Lara, M.E.B., Garcia, M.C.G., Fatima, T., Ehness, R., Lee, T.K., Proels, R., Tanner, W., and Roitsch, T. (2004). Extracellular invertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16, 1276–1287.CrossRefGoogle Scholar
  18. Lee, S.J., Saravanan, R.S., Damasceno, C.M., Yamane, H., Kim, B.D., and Rose, J.K. (2004). Digging deeper into the plant cell wall proteome. Plant Physiol. Biochem. 42, 979–988.PubMedCrossRefGoogle Scholar
  19. Lerouxel, O., Cavalier, D.M., Liepman, A.H., and Keegstra, K. (2006). Biosynthesis of plant cell wall polysaccharides — a complex process. Curr. Opin. Plant Biol. 9, 621–630.PubMedCrossRefGoogle Scholar
  20. Lim, P.O., Kim, H.J., and Nam, H.G. (2007). Leaf senescence. Annu. Rev. Plant Biol. 58, 115–136.PubMedCrossRefGoogle Scholar
  21. Lohman, K.N., Gan, S.S., John, M.C., and Amasino, R.M. (1994). Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plantarum 92, 322–328.CrossRefGoogle Scholar
  22. Matsuzaki, Y., Ogawa-Ohnishi, M., Mori, A., and Matsubayashi, Y. (2010). Secreted peptide signals required for maintenance of root stem cell niche in Arabidopsis. Science 329, 1065–1067.PubMedCrossRefGoogle Scholar
  23. Oh, I.S., Park, A.R., Bae, M.S., Kwon, S.J., Kim, Y.S., Lee, J.E., Kang, N.Y., Lee, S., Cheong, H., and Park, O.K. (2005). Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17, 2832–2847.PubMedCrossRefGoogle Scholar
  24. Oh, S.K., Kim, S.B., Yeom, S.I., Lee, H.A., and Choi, D. (2010). Positive-selection and ligation-independent cloning vectors for large scale in planta expression for plant functional genomics. Mol. Cells 30, 557–562.PubMedCrossRefGoogle Scholar
  25. Park, J.A., Ahn, J.W., Kim, Y.K., Kim, S.J., Kim, J.K., Kim, W.T., and Pai, H.S. (2005). Retinoblastoma protein regulates cell proliferation, differentiation, and endoreduplication in plants. Plant J. 42, 153–163.PubMedCrossRefGoogle Scholar
  26. Park, S.Y., Yu, J.W., Park, J.S., Li, J., Yoo, S.C., Lee, N.Y., Lee, S. K., Jeong, S.W., Seo, H.S., Koh, H.J., et al. (2007). The senescence-induced staygreen protein regulates chlorophyll degradation. Plant Cell 19, 1649–1664.PubMedCrossRefGoogle Scholar
  27. Pien, S., Wyrzykowska, J., McQueen-Mason, S., Smart, C., and Fleming, A. (2001). Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. USA 98, 11812–11817.PubMedCrossRefGoogle Scholar
  28. Pontier, D., Gan, S., Amasino, R.M., Roby, D., and Lam, E. (1999). Markers for hypersensitive response and senescence show distinct patterns of expression. Plant Mol. Biol. 39, 1243–1255.PubMedCrossRefGoogle Scholar
  29. Quirino, B.F., Noh, Y.S., Himelblau, E., and Amasino, R.M. (2000). Molecular aspects of leaf senescence. Trends Plant Sci. 5, 278–282.PubMedCrossRefGoogle Scholar
  30. Schnittger, A., Schobinger, U., Bouyer, D., Weinl, C., Stierhof, Y.D., and Hulskamp, M. (2002). Ectopic D-type cyclin expression induces not only DNA replication but also cell division in Arabidopsis trichomes. Proc. Natl. Acad. Sci. USA 99, 6410–6415.PubMedCrossRefGoogle Scholar
  31. Showalter, A.M. (1993). Structure and function of plant cell wall proteins. Plant Cell 5, 9–23.PubMedCrossRefGoogle Scholar
  32. Sugimoto-Shirasu, K., and Roberts, K. (2003). “Big it up”: endoreduplication and cell-size control in plants. Curr. Opin. Plant Biol.,6, 544–553PubMedCrossRefGoogle Scholar
  33. Suh, M.C., Choi, D., and Liu, J.R. (1998). Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol. Cells 8, 678–684.PubMedGoogle Scholar
  34. van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U.I., and Kunze, R. (2006). Transcription analysis of Arabidopsis membrane transporters and hormone pathways during developmental and induced leaf senescence. Plant Physiol. 141, 776–792.PubMedCrossRefGoogle Scholar
  35. Walker, J.D., Oppenheimer, D.G., Concienne, J., and Larkin, J.C. (2000). SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. Development 127, 3931–3940.PubMedGoogle Scholar
  36. Weaver, L.M., Gan, S.S., Quirino, B., and Amasino, R.M. (1998). A comparison of the expression patterns of several senescenceassociated genes in response to stress and hormone treatment. Plant Mol. Biol. 37, 455–469.PubMedCrossRefGoogle Scholar
  37. Woo, H.R., Chung, K.M., Park, J.H., Oh, S.A., Ahn, T., Hong, S.H., Jang, S.K., and Nam, H.G. (2001). ORE9, an F-box protein that regulates leaf senescence in Arabidopsis. Plant Cell 13, 1779–1790.PubMedCrossRefGoogle Scholar
  38. Wu, F., Eannetta, N.T., Xu, Y., Durrett, R., Mazourek, M., Jahn, M.M., and Tanksley, S.D. (2009). A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor. Appl. Genet. 118, 1279–1293.PubMedCrossRefGoogle Scholar
  39. Yeom, S.I., Baek, H.K., Oh, S.K., Kang, W.H., Lee, S.J., Lee, J.M., Seo, E., Rose, J.K., Kim, B.D., and Choi, D. (2011). Use of a secretion trap screen in pepper following Phytophthora capsici infection reveals novel functions of secreted plant proteins in modulating cell death. Mol. Plant Microbe Int. 24, 671–684.CrossRefGoogle Scholar
  40. Yeom, S.I., Seo, E., Oh, S.K., Kim, K.W., and Choi, D. (2012). A common plant cell-wall protein HyPRP1 has dual roles as a positive regulator of cell death and a negative regulator of basal defense against pathogens. Plant J. 69, 655–768.CrossRefGoogle Scholar
  41. Yoo, E.Y., Kim, S., Kim, Y.H., Lee, C.J., and Kim, B.D. (2003). Construction of a deep coverage BAC library from Capsicum annuum, ‘CM334’. Theor. Appl. Genet. 107, 540–543.PubMedCrossRefGoogle Scholar
  42. Yoon, J., Chung, W.I., and Choi, D. (2009). NbHB1, Nicotiana benthamiana homeobox 1, is a jasmonic acid-dependent positive regulator of pathogen-induced plant cell death. New Phytol. 184, 71–84.PubMedCrossRefGoogle Scholar
  43. Yoshida, S., Ito, M., Callis, J., Nishida, I., and Watanabe, A. (2002). A delayed leaf senescence mutant is defective in arginyltRNA: protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J. 32, 129–137.PubMedCrossRefGoogle Scholar
  44. Zapata, J.M., Guera, A., Esteban-Carrasco, A., Martin, M., and Sabater, B. (2005). Chloroplasts regulate leaf senescence: delayed senescence in transgenic ndhF-defective tobacco. Cell Death Differ. 12, 1277–1284.PubMedCrossRefGoogle Scholar
  45. Zhou, X., Jiang, Y., and Yu, D. (2011). WRKY22 transcription factor mediates dark-induced leaf senescence in Arabidopsis. Mol. Cells 31, 303–313.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2012

Authors and Affiliations

  • Eunyoung Seo
    • 1
  • Seon-In Yeom
    • 1
  • SungHwan Jo
    • 2
  • Heejin Jeong
    • 1
  • Byoung-Cheorl Kang
    • 1
  • Doil Choi
    • 1
    Email author
  1. 1.Department of Plant Science, Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
  2. 2.Seeders Inc.DaejeonKorea

Personalised recommendations