Advertisement

Molecules and Cells

, Volume 32, Issue 2, pp 133–142 | Cite as

Development of novel monoclonal antibodies that define differentiation stages of human stromal (mesenchymal) stem cells

  • Ditte C. AndersenEmail author
  • Angela Kortesidis
  • Andrew C. W. Zannettino
  • Irina Kratchmarova
  • Li Chen
  • Ole N. Jensen
  • Børge Teisner
  • Stan Gronthos
  • Charlotte H. Jensen
  • Moustapha Kassem
Article

Abstract

Human mesenchymal stem cells (hMSC) are currently being introduced for cell therapy, yet, antibodies specific for native and differentiated MSCs are required for their identification prior to clinical use. Herein, high quality antibodies against MSC surface proteins were developed by immunizing mice with hMSC, and by using a panel of subsequent screening methods. Flow cytometry analysis revealed that 83.5, 1.1, and 8.5% of primary cultures of hMSC were double positive for STRO-1 and either of DJ 3, 9, and 18, respectively. However, none of the three DJ antibodies allowed enrichment of clonogenic hMSC from BMMNCs as single reagents. Using mass-spectrometric analysis, we identified the antigen recognised by DJ3 as CD44, whereas DJ9 and DJ18 recognized HLA-DRB1 and Collagen VI, respectively. The identified proteins were highly expressed throughout in vitro osteogenic- and adipogenic differentiation. Interestingly, undifferentiated cells revealed a sole cytoplasmic distribution pattern of Collagen VI, which however changed to an extracellular matrix appearance upon osteogenic- and adipogenic differentiation. In relation to this, we found that STRO-1+/−/Collagen VI sorted hMSC contained fewer differentiated alkaline phosphatase+ cells compared to STRO-1+/−/Collagen VI+ hMSC, suggesting that Collagen VI on the cell membrane exclusively defines differentiated MSCs. In conclusion, we have generated a panel of high quality antibodies to be used for characterization of MSCs, and in addition our results may suggest that the DJ18 generated antibody against Collagen VI can be used for negative selection of cultured undifferentiated MSCs.

Keywords

mesenchymal stem cells (MSC) monoclonal antibodies MSC differentiation MSC markers osteogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdallah, B.M., and Kassem, M. (2008). Human mesenchymal stem cells: from basic biology to clinical applications. Gene Ther. 15, 109–116.PubMedCrossRefGoogle Scholar
  2. Abdallah, B.M., Haack-Sorensen, M., Burns, J.S., Elsnab, B., Jakob, F., Hokland, P., and Kassem, M. (2005). Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem. Biophys. Res. Commun. 326, 527–538.PubMedCrossRefGoogle Scholar
  3. Andersen, D.C., Petersson, S.J., Jorgensen, L.H., Bollen, P., Jensen, P.B., Teisner, B., Schroeder, H.D., and Jensen, C.H. (2009). Characterization of DLK1+ cells emerging during skeletal muscle remodeling in response to myositis, myopathies, and acute injury. Stem Cells 27, 898–908.PubMedCrossRefGoogle Scholar
  4. Barry, F.P., Boynton, R.E., Haynesworth, S., Murphy, J.M., and Zaia, J. (1999). The monoclonal antibody SH-2, raised against human mesenchymal stem cells, recognizes an epitope on endoglin (CD105). Biochem. Biophys. Res. Commun. 265, 134–139.PubMedCrossRefGoogle Scholar
  5. Barry, F., Boynton, R., Murphy, M., Haynesworth, S., and Zaia, J. (2001). The SH-3 and SH-4 antibodies recognize distinct epitopes on CD73 from human mesenchymal stem cells. Biochem. Biophys. Res. Commun. 289, 519–524.PubMedCrossRefGoogle Scholar
  6. Bianco, P., Riminucci, M., Gronthos, S., and Robey, P.G. (2001). Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19, 180–192.PubMedCrossRefGoogle Scholar
  7. Bruder, S.P., Horowitz, M.C., Mosca, J.D., and Haynesworth, S.E. (1997). Monoclonal antibodies reactive with human osteogenic cell surface antigens. Bone 21, 225–235.PubMedCrossRefGoogle Scholar
  8. Chan, W.K., Lau, A.S., Li, J.C., Law, H.K., Lau, Y.L., and Chan, G.C. (2008). MHC expression kinetics and immunogenicity of mesenchymal stromal cells after short-term IFN-gamma challenge. Exp. Hematol. 36, 1545–1555.PubMedCrossRefGoogle Scholar
  9. Choi, H.S., Kim, H., Won, A., Kim, J.J., Son, C.Y., Kim, K.S., Ko, J.H., Lee, M.Y., Kim, C.H., and Ryu, C.J. (2008). Development of a decoy immunization strategy to identify cell-surface molecules expressed on undifferentiated human embryonic stem cells. Cell Tissue Res. 333, 197–206.PubMedCrossRefGoogle Scholar
  10. Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., Rosset, P., Sensebé, L., Layrolle, P., Häupl, T., et al., (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 1111, 2631–2635.CrossRefGoogle Scholar
  11. Doliana, R., Bonaldo, P., and Colombatti, A. (1990). Multiple forms of chicken alpha 3(VI) collagen chain generated by alternative splicing in type A repeated domains. J. Cell Biol. 111, 2197–2205.PubMedCrossRefGoogle Scholar
  12. Foster, L.J., Zeemann, P.A., Li, C., Mann, M., Jensen, O.N., and Kassem, M. (2005). Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells 23, 1367–1377.PubMedCrossRefGoogle Scholar
  13. Gronthos, S., Graves, S.E., Ohta, S., and Simmons, P.J. (1994). The STRO-1+ fraction of adult human bone marrow contains the osteogenic precursors. Blood 84, 4164–4173.PubMedGoogle Scholar
  14. Gronthos, S., Zannettino, A.C., Hay, S.J., Shi, S., Graves, S.E., Kortesidis, A., and Simmons, P.J. (2003). Molecular and cellular characterisation of highly purified stromal stem cells derived from human bone marrow. J. Cell Sci. 116, 1827–1835.PubMedCrossRefGoogle Scholar
  15. Gronthos, S., Fitter, S., Diamond, P., Simmons, P.J., Itescu, S., and Zannettino, A.C. (2007). A novel monoclonal antibody (STRO-3) identifies an isoform of tissue nonspecific alkaline phosphatase expressed by multipotent bone marrow stromal stem cells. Stem Cells Dev. 16, 953–963.PubMedCrossRefGoogle Scholar
  16. Gronthos, S., McCarty, R., Mrozik, K., Fitter, S., Paton, S., Menicanin, D., Itescu, S., Bartold, P.M., Xian, C., and Zannettino, A.C. (2009). Heat shock protein-90 beta is expressed at the surface of multipotential mesenchymal precursor cells: generation of a novel monoclonal antibody, STRO-4, with specificity for mesenchymal precursor cells from human and ovine tissues. Stem Cells Dev. 18, 1253–1262.PubMedCrossRefGoogle Scholar
  17. Haynesworth, S.E., Baber, M.A., and Caplan, A.I. (1992). Cell surface antigens on human marrow-derived mesenchymal cells are detected by monoclonal antibodies. Bone 13, 69–80.PubMedCrossRefGoogle Scholar
  18. Joyner, C.J., Bennett, A., and Triffitt, J.T. (1997). Identification and enrichment of human osteoprogenitor cells by using differentiation stage-specific monoclonal antibodies. Bone 21, 1–6.PubMedCrossRefGoogle Scholar
  19. Kassem, M., Mosekilde, L., Rungby, J., Melsen, F., and Eriksen, E.F. (1991). Formation of osteoclasts and osteoblast-like cells in long-term human bone marrow cultures. APMIS 99, 262–268.PubMedCrossRefGoogle Scholar
  20. Kohler, G., and Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497.PubMedCrossRefGoogle Scholar
  21. Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., and Mann, M. (2005). Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. Science 308, 1472–1477.PubMedCrossRefGoogle Scholar
  22. Kuznetsov, S.A., Krebsbach, P.H., Satomura, K., Kerr, J., Riminucci, M., Benayahu, D., and Robey, P.G. (1997). Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J. Bone Miner. Res. 12, 1335–1347.PubMedCrossRefGoogle Scholar
  23. Larsen, K.H., Frederiksen, C.M., Burns, J.S., Abdallah, B.M., and Kassem, M. (2010). Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone forming capacity. J. Bone Miner. Res. 25, 796–808.PubMedGoogle Scholar
  24. Liu, F., Akiyama, Y., Tai, S., Maruyama, K., Kawaguchi, Y., Muramatsu, K., and Yamaguchi, K. (2008). Changes in the expression of CD106, osteogenic genes, and transcription factors involved in the osteogenic differentiation of human bone marrow mesenchymal stem cells. J. Bone Miner. Metab. 26, 312–320.PubMedCrossRefGoogle Scholar
  25. Minguell, J.J., Erices, A., and Conget, P. (2001). Mesenchymal stem cells. Exp. Biol. Med. (Maywood) 226, 507–520.Google Scholar
  26. Muratoglu, S., Bachrati, C., Malpeli, M., Szabo, P., Neri, M., Dozin, B., Deak, F., Cancedda, R., and Kiss, I. (1995). Expression of the cartilage matrix protein gene at different chondrocyte developmental stages. Eur. J. Cell Biol. 68, 411–418.PubMedGoogle Scholar
  27. Naugle, J.E., Olson, E.R., Zhang, X., Mase, S.E., Pilati, C.F., Maron, M.B., Folkesson, H.G., Horne, W.I., Doane, K.J., and Meszaros, J.G. (2006). Type VI collagen induces cardiac myofibroblast differentiation: implications for postinfarction remodeling. Am. J. Physiol. Heart Circ. Physiol. 290, H323–330.PubMedCrossRefGoogle Scholar
  28. Pontikoglou, C., Delorme, B., and Charbord, P. (2008). Human bone marrow native mesenchymal stem cells. Regen. Med. 3, 731–741.PubMedCrossRefGoogle Scholar
  29. Reading, C.L. (1982). Theory and methods for immunization in culture and monoclonal antibody production. J. Immunol. Methods 53, 261–291.PubMedCrossRefGoogle Scholar
  30. Rudy, W., Hofmann, M., Schwartz-Albiez, R., Zoller, M., Heider, K.H., Ponta, H., and Herrlich, P. (1993). The two major CD44 proteins expressed on a metastatic rat tumor cell line are derived from different splice variants: each one individually suffices to confer metastatic behavior. Cancer Res. 53, 1262–1268.PubMedGoogle Scholar
  31. Simmons, P.J., and Torok-Storb, B. (1991). Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, STRO-1. Blood 78, 55–62.PubMedGoogle Scholar
  32. Simonsen, J.L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S.I., Jensen, T.G., and Kassem, M. (2002). Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 20, 592–596.PubMedCrossRefGoogle Scholar
  33. Skjoedt, M.O., Palarasah, Y., Rasmussen, K., Vitved, L., Salomonsen, J., Kliem, A., Hansen, S., Koch, C., and Skjodt, K. (2010). Two mannose-binding lectin homologues and an MBL-associated serine protease are expressed in the gut epithelia of the urochordate species Ciona intestinalis. Dev. Comp. Immunol. 34, 59–68.PubMedCrossRefGoogle Scholar
  34. Sotiropoulou, P.A., Perez, S.A., Salagianni, M., Baxevanis, C.N., and Papamichail, M. (2006). Characterization of the optimal culture conditions for clinical scale production of human mesen chymal stem cells. Stem Cells 24, 462–471.PubMedCrossRefGoogle Scholar
  35. Triantafilou, K., Triantafilou, M., Wilson, K.M., and Fernandez, N. (2000). Human major histocompatibility molecules have the intrinsic ability to form homotypic associations. Hum. Immunol. 61, 585–598.PubMedCrossRefGoogle Scholar
  36. Xu, J., Wang, W., Ludeman, M., Cheng, K., Hayami, T., Lotz, J.C., and Kapila, S. (2008). Chondrogenic differentiation of human mesenchymal stem cells in three-dimensional alginate gels. Tissue Eng. Part A 14, 667–680.PubMedCrossRefGoogle Scholar
  37. Zannettino, A.C., Harrison, K., Joyner, C.J., Triffitt, J.T., and Simmons, P.J. (2003). Molecular cloning of the cell surface antigen identified by the osteoprogenitor-specific monoclonal antibody, HOP-26. J. Cell. Biochem. 89, 56–66.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Ditte C. Andersen
    • 1
    Email author
  • Angela Kortesidis
    • 2
  • Andrew C. W. Zannettino
    • 3
  • Irina Kratchmarova
    • 4
  • Li Chen
    • 5
  • Ole N. Jensen
    • 4
  • Børge Teisner
    • 1
  • Stan Gronthos
    • 2
  • Charlotte H. Jensen
    • 1
  • Moustapha Kassem
    • 5
    • 6
  1. 1.Department of Cancer and Inflammation ResearchUniversity of Southern DenmarkOdenseDenmark
  2. 2.Mesenchymal Stem Cell Group, Department of HaematologyInstitute of Medical and Veterinary Science/Hanson InstituteAdelaideAustralia
  3. 3.Myeloma Research Laboratory, Department of HaematologyInstitute of Medical and Veterinary Science/Hanson InstituteAdelaideAustralia
  4. 4.Center for Experimental BioInformatics, Department of Biochemistry and Molecular BiologyUniversity of Southern DenmarkOdenseDenmark
  5. 5.Department of Endocrinology and MetabolismOdense University HospitalOdenseDenmark
  6. 6.Stem Cell Unit, Department of Anatomy, College of MedicineKing Saud UniveristyRiyadhKSA

Personalised recommendations