Molecules and Cells

, Volume 31, Issue 6, pp 573–578 | Cite as

Hypoxia inducible factor-1α directly induces the expression of receptor activator of nuclear factor-κB ligand in periodontal ligament fibroblasts

  • Hyun-Jung Park
  • Kyung Hwa Baek
  • Hye-Lim Lee
  • Arang Kwon
  • Hyo Rin Hwang
  • Abdul S. Qadir
  • Kyung Mi Woo
  • Hyun-Mo Ryoo
  • Jeong-Hwa Baek
Article

Abstract

During orthodontic tooth movement, local hypoxia and enhanced osteoclastogenesis are observed in the compression side of periodontal tissues. The receptor activator of nuclear factor-κB ligand (RANKL) is an osteoblast/stromal cell-derived factor that is essential for osteoclastogenesis. In this study, we examined the effect of hypoxia on RANKL expression in human periodontal ligament fibroblasts (PDLFs) to investigate the relationship between local hypoxia and enhanced osteoclastogenesis in the compression side of periodontal tissues. Hypoxia significantly enhanced the levels of RANKL mRNA and protein as well as hypoxia inducible factor-1α (HIF-1α) protein in PDLFs. Constitutively active HIF-1α alone significantly increased the levels of RANKL expression in PDLFs under normoxic conditions, whereas dominant negative HIF-1α blocked hypoxia-induced RANKL expression. To investigate further whether HIF-1α directly regulates RANKL transcription, a luciferase reporter assay was performed using the reporter vector containing the RANKL promoter sequence. Exposure to hypoxia or overexpression of constitutively active HIF-1α significantly increased RANKL promoter activity, whereas dominant negative HIF-1α blocked hypoxia-induced RANKL promoter activity. Furthermore, mutations of putative HIF-1α binding elements in RANKL promoter prevented hypoxia-induced RANKL promoter activity. The results of chromatin immunoprecipitation showed that hypoxia or constitutively active HIF-1α increased the DNA binding of HIF-1α to RANKL promoter. These results suggest that HIF-1α mediates hypoxia-induced up-regulation of RANKL expression and that in compression side periodontal ligament, hypoxia enhances osteoclastogenesis, at least in part, via an increased RANKL expression in PDLFs.

Keywords

hypoxia hypoxia inducible factor-1α periodontal ligament fibroblasts RANK Ligand 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amarilio, R., Viukov, S.V., Sharir, A., Eshkar-Oren, I., Johnson, R.S., and Zelzer, E. (2007). HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134, 3917–3928.PubMedCrossRefGoogle Scholar
  2. Arnett, T.R., Gibbons, D.C., Utting, J.C., Orriss, I.R., Hoebertz, A., Rosendaal, M., and Meghji, S. (2003). Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell. Physiol. 196, 2–8.PubMedCrossRefGoogle Scholar
  3. Cattaneo, P.M., Dalstra, M., and Melsen, B. (2005). The finite element method: a tool to study orthodontic tooth movement. J. Dent. Res. 84, 428–433.PubMedCrossRefGoogle Scholar
  4. Cho, Y.D., Yoon, W.J., Woo, K.M., Baek, J.H., Lee, G., Cho, J.Y., and Ryoo, H.M. (2009). Molecular regulation of matrix extracellular phosphoglycoprotein expression by bone morphogenetic protein-2. J. Biol. Chem. 284, 25230–25240.PubMedCrossRefGoogle Scholar
  5. Chun, Y.S., Choi, E., Kim, T.Y., Kim, M.S., and Park, J.W. (2002). A dominant-negative isoform lacking exons 11 and 12 of the human hypoxia-inducible factor-1alpha gene. Biochem. J. 362, 71–79.PubMedCrossRefGoogle Scholar
  6. Clauss, M., Weich, H., Breier, G., Knies, U., Rockl, W., Waltenberger, J., and Risau, W. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J. Biol. Chem. 271, 17629–17634.PubMedCrossRefGoogle Scholar
  7. Deckers, M.M., Karperien, M., van der Bent, C., Yamashita, T., Papapoulos, S.E., and Lowik, C.W. (2000). Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141, 1667–1674.PubMedCrossRefGoogle Scholar
  8. Fukuoka, H., Aoyama, M., Miyazawa, K., Asai, K., and Goto, S. (2005). Hypoxic stress enhances osteoclast differentiation via increasing IGF2 production by non-osteoclastic cells. Biochem. Biophys. Res. Commun. 328, 885–894.PubMedCrossRefGoogle Scholar
  9. Hamrick, S.E., McQuillen, P.S., Jiang, X., Mu, D., Madan, A., and Ferriero, D.M. (2005). A role for hypoxia-inducible factor-1alpha in desferoxamine neuroprotection. Neurosci. Lett. 379, 96–100.PubMedCrossRefGoogle Scholar
  10. Kanzaki, H., Chiba, M., Shimizu, Y., and Mitani, H. (2002). Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res. 17, 210–220.PubMedCrossRefGoogle Scholar
  11. Kitase, Y., Yokozeki, M., Fujihara, S., Izawa, T., Kuroda, S., Tanimoto, K., Moriyama, K., and Tanaka, E. (2009). Analysis of gene expression profiles in human periodontal ligament cells under hypoxia: the protective effect of CC chemokine ligand 2 to oxygen shortage. Arch. Oral Biol. 54, 618–624.PubMedCrossRefGoogle Scholar
  12. Knowles, H.J., and Athanasou, N.A. (2008). Hypoxia-inducible factor is expressed in giant cell tumour of bone and mediates paracrine effects of hypoxia on monocyte-osteoclast differentiation via induction of VEGF. J. Pathol. 215, 56–66.PubMedCrossRefGoogle Scholar
  13. Knowles, H.J., and Athanasou, N.A. (2009). Acute hypoxia and osteoclast activity: a balance between enhanced resorption and increased apoptosis. J. Pathol. 218, 256–264.PubMedCrossRefGoogle Scholar
  14. Kubota, M. (1989). Study on proliferation and function of periodontal ligament fibroblasts and osteoblastic cells under hypoxia. Kokubyo Gakkai Zasshi. 56, 473–484.PubMedGoogle Scholar
  15. Loboda, A., Jozkowicz, A., and Dulak, J. (2010). HIF-1 and HIF-2 transcription factors — similar but not identical. Mol. Cells 29, 435–442.PubMedCrossRefGoogle Scholar
  16. Matsumoto, Y., Tanaka, K., Hirata, G., Hanada, M., Matsuda, S., Shuto, T., and Iwamoto, Y. (2002). Possible involvement of the vascular endothelial growth factor-Flt-1-focal adhesion kinase pathway in chemotaxis and the cell proliferation of osteoclast precursor cells in arthritic joints. J. Immunol. 168, 5824–5831.PubMedGoogle Scholar
  17. Motohira, H., Hayashi, J., Tatsumi, J., Tajima, M., Sakagami, H., and Shin, K. (2007). Hypoxia and reoxygenation augment boneresorbing factor production from human periodontal ligament cells. J. Periodontol. 78, 1803–1809.PubMedCrossRefGoogle Scholar
  18. Nakao, K., Goto, T., Gunjigake, K.K., Konoo, T., Kobayashi, S., and Yamaguchi, K. (2007). Intermittent force induces high RANKL expression in human periodontal ligament cells. J. Dent. Res. 86, 623–628.PubMedCrossRefGoogle Scholar
  19. Nishijima, Y., Yamaguchi, M., Kojima, T., Aihara, N., Nakajima, R., and Kasai, K. (2006). Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod. Craniofac. Res. 9, 63–70.PubMedCrossRefGoogle Scholar
  20. Ogasawara, T., Yoshimine, Y., Kiyoshima, T., Kobayashi, I., Matsuo, K., Akamine, A., and Sakai, H. (2004). In situ expression of RANKL, RANK, osteoprotegerin and cytokines in osteoclasts of rat periodontal tissue. J. Periodont. Res. 39, 42–49.PubMedCrossRefGoogle Scholar
  21. Semenza, G.L. (2000). HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J. Appl. Physiol. 88, 1474–1480.PubMedGoogle Scholar
  22. Semenza, G.L., Jiang, B.H., Leung, S.W., Passantino, R., Concordet, J.P., Maire, P., and Giallongo, A. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537.PubMedCrossRefGoogle Scholar
  23. Shirakura, M., Tanimoto, K., Eguchi, H., Miyauchi, M., Nakamura, H., Hiyama, K., Tanaka, E., Takata, T., and Tanne, K. (2010). Activation of the hypoxia-inducible factor-1 in overloaded temporomandibular joint, and induction of osteoclastogenesis. Biochem. Biophys. Res. Commun. 393, 800–805.PubMedCrossRefGoogle Scholar
  24. Shuttleworth, C.A., and Smalley, J.W. (1983). Periodontal ligament. Int. Rev. Connect. Tissue Res. 10, 211–247.PubMedGoogle Scholar
  25. Steinbach, J.P., Klumpp, A., Wolburg, H., and Weller, M. (2004). Inhibition of epidermal growth factor receptor signaling protects human malignant glioma cells from hypoxia-induced cell death. Cancer Res. 64, 1575–1578.PubMedCrossRefGoogle Scholar
  26. Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, T.J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20, 345–357.PubMedCrossRefGoogle Scholar
  27. Udagawa, N., Takahashi, N., Jimi, E., Matsuzaki, K., Tsurukai, T., Itoh, K., Nakagawa, N., Yasuda, H., Goto, M., Tsuda, E., et al. (1999). Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Bone 25, 517–523.PubMedCrossRefGoogle Scholar
  28. Wada, T., Nakashima, T., Hiroshi, N., and Penninger, J.M. (2006). RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol. Med. 12, 17–25.PubMedCrossRefGoogle Scholar
  29. Wan, C., Gilbert, S.R., Wang, Y., Cao, X., Shen, X., Ramaswamy, G., Jacobsen, K.A., Alaql, Z.S., Eberhardt, A.W., Gerstenfeld, L.C., et al. (2008). Activation of the hypoxia-inducible factor-1alpha pathway accelerates bone regeneration. Proc. Natl. Acad. Sci. USA 105, 686–691.PubMedCrossRefGoogle Scholar
  30. Xie, R., Kuijpers-Jagtman, A.M., and Maltha, J.C. (2008). Osteoclast differentiation during experimental tooth movement by a short-term force application: an immunohistochemical study in rats. Acta Odontol. Scand. 66, 314–320.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Hyun-Jung Park
    • 1
  • Kyung Hwa Baek
    • 1
  • Hye-Lim Lee
    • 1
  • Arang Kwon
    • 1
  • Hyo Rin Hwang
    • 1
  • Abdul S. Qadir
    • 1
  • Kyung Mi Woo
    • 1
  • Hyun-Mo Ryoo
    • 1
  • Jeong-Hwa Baek
    • 1
  1. 1.Department of Molecular Genetics, School of Dentistry and Dental Research InstituteSeoul National UniversitySeoulKorea

Personalised recommendations