Molecules and Cells

, Volume 32, Issue 1, pp 77–82 | Cite as

Regulation of vascular endothelial growth factor signaling by miR-200b

  • Young-Chul Choi
  • Sena Yoon
  • Yongsu Jeong
  • Jaeseung Yoon
  • Kwanghee Baek
Article

Abstract

Vascular endothelial growth factor (VEGF) signaling plays an important role in angiogenesis. In the VEGF signaling pathway, the key components are VEGF and its receptors, Flt-1 and KDR. In this study, we show that transfection of synthetic miR-200b reduced protein levels of VEGF, Flt-1, and KDR. In A549 cells, miR-200b targeted the predicted binding sites in the 3′-untranslated region (3′-UTR) of VEGF, Flt-1, and KDR as revealed by a luciferase reporter assay. When transfected with miR-200b, the ability of HUVECs to form a capillary tube on Matrigel and VEGF-induced phosphorylation of ERK1/2 were significantly reduced. Taken together, these results suggest that miR-200b negatively regulates VEGF signaling by targeting VEGF and its receptors and that miR-200b may have therapeutic potential as an angiogenesis inhibitor.

Keywords

Flt-1 KDR microRNA miR-200b VEGF VEGF signaling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.PubMedCrossRefGoogle Scholar
  2. Carmeliet, P. (2005). Angiogenesis in life, disease and medicine. Nature 438, 932–936.PubMedCrossRefGoogle Scholar
  3. Chan, Y.C., Khanna, S., Roy, S., and Sen, C.K. (2011). miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 286, 2047–2056.PubMedCrossRefGoogle Scholar
  4. Eskens, F.A. (2004). Angiogenesis inhibitors in clinical development; where are we now and where are we going? Br. J. Cancer 90, 1–7.PubMedCrossRefGoogle Scholar
  5. Ferrara, N. (1999). Molecular and biological properties of vascular endothelial growth factor. J. Mol. Med. 77, 527–543.PubMedCrossRefGoogle Scholar
  6. Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr. Rev. 25, 581–611.PubMedCrossRefGoogle Scholar
  7. Ferrara, N., and Kerbel, R.S. (2005). Angiogenesis as a therapeutic target. Nature 438, 967–974.PubMedCrossRefGoogle Scholar
  8. Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat. Med. 9, 669–676.PubMedCrossRefGoogle Scholar
  9. Fish, J.E., Santoro, M.M., Morton, S.U., Yu, S., Yeh, R.F., Wythe, J.D., Ivey, K.N., Bruneau, B.G., Stainier, D.Y., and Srivastava, D. (2008). miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell 15, 272–284.PubMedCrossRefGoogle Scholar
  10. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182–1186.PubMedCrossRefGoogle Scholar
  11. Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1, 27–31.PubMedCrossRefGoogle Scholar
  12. Graff, J.R., Herman, J.G., Lapidus, R.G., Chopra, H., Xu, R., Jarrard, D.F., Isaacs, W.B., Pitha, P.M., Davidson, N.E., and Baylin, S.B. (1995). E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 55, 5195–5199.PubMedGoogle Scholar
  13. Gregory, P.A., Bert, A.G., Paterson, E.L., Barry, S.C., Tsykin, A., Farshid, G., Vadas, M.A., Khew-Goodall, Y., and Goodall, G.J. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601.PubMedCrossRefGoogle Scholar
  14. He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531.PubMedCrossRefGoogle Scholar
  15. Hua, Z., Lv, Q., Ye, W., Wong, C.K., Cai, G., Gu, D., Ji, Y., Zhao, C., Wang, J., Yang, B.B., et al. (2006). MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1, e116.PubMedCrossRefGoogle Scholar
  16. Kim, V.N. (2005). Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1–15.PubMedCrossRefGoogle Scholar
  17. Kim, S., Lee, U.J., Kim, M.N., Lee, E.J., Kim, J.Y., Lee, M.Y., Choung, S., Kim, Y.J., and Choi, Y.C. (2008). MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). J. Biol. Chem. 283, 18158–18166.PubMedCrossRefGoogle Scholar
  18. Liu, H., Brannon, A.R., Reddy, A.R., Alexe, G., Seiler, M.W., Arreola, A., Oza, J.H., Yao, M., Juan, D., Liou, L.S., et al. (2010). Identifying mRNA targets of microRNA dysregulated in cancer: with application to clear cell renal cell carcinoma. BMC Syst. Biol. 4, 51.PubMedCrossRefGoogle Scholar
  19. Park, S.M., Gaur, A.B., Lengyel, E., and Peter, M.E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907.PubMedCrossRefGoogle Scholar
  20. Roybal, J.D., Zang, Y., Ahn, Y.H., Yang, Y., Gibbons, D.L., Baird, B.N., Alvarez, C.A., Thilaganathan, N., Saintigny, P., Liu, D., et al. (2011). miR-200 inhibits lung adenocarcinoma cell invasion and metastasis by targeting Flt1/VEGFR1. Mol. Cancer Res. 9, 25–35.PubMedCrossRefGoogle Scholar
  21. Suárez, Y., and Sessa, W.C. (2009). MicroRNAs as novel regulators of angiogenesis. Circ. Res. 104, 442–454.PubMedCrossRefGoogle Scholar
  22. van Solingen, C., Seghers, L., Bijkerk, R., Duijs, J.M., Roeten, M.K., van Oeveren-Rietdijk, A.M., Baelde, H.J., Monge, M., Vos, J.B., de Boer, H.C., et al. (2009). Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med. 13, 1577–1585.PubMedCrossRefGoogle Scholar
  23. Vrba, L., Jensen, T.J., Garbe, J.C., Heimark, R.L., Cress, A.E., Dickinson, S., Stampfer, M.R., and Futscher, B.W. (2010). Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells. PLoS One 5, e8697.PubMedCrossRefGoogle Scholar
  24. Wang, S., and Olson, E.N. (2009). AngiomiRs—key regulators of angiogenesis. Curr. Opin. Genet. Dev. 19, 205–211.PubMedCrossRefGoogle Scholar
  25. Wang, S., Aurora, A.B., Johnson, B.A., Qi, X., McAnally, J., Hill, J.A., Richardson, J.A., Bassel-Duby, R., and Olson, E.N. (2008). The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev. Cell 15, 261–271.PubMedCrossRefGoogle Scholar
  26. Wiklund, E.D., Bramsen, J.B., Hulf, T., Dyrskjøt, L., Ramanathan, R., Hansen, T.B., Villadsen, S.B., Gao, S., Ostenfeld, M.S., Borre, M., et al. (2010). Coordinated epigenetic repression of the miR-200 family and miR-205 in invasive bladder cancer. Int. J. Cancer 128, 1327–1334.CrossRefGoogle Scholar
  27. Wu, F., Yang, Z., and Li, G. (2009). Role of specific microRNAs for endothelial function and angiogenesis. Biochem. Biophys. Res. Commun. 386, 549–553.PubMedCrossRefGoogle Scholar
  28. Yoshiura, K., Kanai, Y., Ochiai, A., Shimoyama, Y., Sugimura, T., and Hirohashi, S. (1995). Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc. Natl. Acad. Sci. USA 92, 7416–7419.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Young-Chul Choi
    • 1
  • Sena Yoon
    • 1
  • Yongsu Jeong
    • 1
  • Jaeseung Yoon
    • 1
  • Kwanghee Baek
    • 1
  1. 1.Graduate School of BiotechnologyKyung Hee UniversityYonginKorea

Personalised recommendations