Advertisement

Molecules and Cells

, Volume 32, Issue 1, pp 1–5 | Cite as

Bioactive lipoxygenase metabolites stimulation of NADPH oxidases and reactive oxygen species

  • Kyung-Jin Cho
  • Ji-Min Seo
  • Jae-Hong KimEmail author
Minireview

Abstract

In mammalian cells, reactive oxygen species (ROS) are produced via a variety of cellular oxidative processes, including the activity of NADPH oxidases (NOX), the activity of xanthine oxidases, the metabolism of arachidonic acid (AA) by lipoxygenases (LOX) and cyclooxygenases (COX), and the mitochondrial respiratory chain. Although NOX-generated ROS are the best characterized examples of ROS in mammalian cells, ROS are also generated by the oxidative metabolism (e.g., via LOX and COX) of AA that is released from the membrane phospholipids via the activity of cytosolic phospholipase A2 (cPLA2). Recently, growing evidence suggests that LOX- and COX-generated AA metabolites can induce ROS generation by stimulating NOX and that a potential signaling connection exits between the LOX/COX metabolites and NOX. In this review, we discuss the results of recent studies that report the generation of ROS by LOX metabolites, especially 5-LOX metabolites, via NOX stimulation. In particular, we have focused on the contribution of leukotriene B4 (LTB4), a potent bioactive eicosanoid that is derived from 5-LOX, and its receptors, BLT1 and BLT2, to NOX stimulation through a signaling mechanism that leads to ROS generation.

Keywords

BLT2 eicosanoids lipoxygenase NOX ROS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becher, U.M., Ghanem, A., Tiyerili, V., Furst, D.O., Nickenig, G., and Mueller, C.F. (2011). Inhibition of leukotriene C(4) action reduces oxidative stress and apoptosis in cardiomyocytes and impedes remodeling after myocardial injury. J. Mol. Cell Cardiol. 50, 570–577.PubMedCrossRefGoogle Scholar
  2. Bedard, K., and Krause, K.H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313.PubMedCrossRefGoogle Scholar
  3. Brash, A.R., Boeglin, W.E., and Chang, M.S. (1997). Discovery of a second 15S-lipoxygenase in humans. Proc. Natl. Acad. Sci. USA 94, 6148–6152.PubMedCrossRefGoogle Scholar
  4. Cho, K.J., Seo, J.M., Lee, M.G., and Kim, J.H. (2010). BLT2 Is upregulated in allergen-stimulated mast cells and mediates the synthesis of Th2 cytokines. J. Immunol. 185, 6329–6337.PubMedCrossRefGoogle Scholar
  5. Choi, J.A., Kim, E.Y., Song, H., Kim, C., and Kim, J.H. (2008). Reac-tive oxygen species are generated through a BLT2-linked cascade in Ras-transformed cells. Free Radic. Biol. Med. 44, 624–634.PubMedCrossRefGoogle Scholar
  6. Choi, J.A., Lee, J.W., Kim, H., Kim, E.Y., Seo, J.M., Ko, J., and Kim, J.H. (2010). Pro-survival of estrogen receptor-negative breast cancer cells is regulated by a BLT2-reactive oxygen specieslinked signaling pathway. Carcinogenesis 31, 543–551.PubMedCrossRefGoogle Scholar
  7. de Carvalho, D.D., Sadok, A., Bourgarel-Rey, V., Gattacceca, F., Penel, C., Lehmann, M., and Kovacic, H. (2008). Nox1 downstream of 12-lipoxygenase controls cell proliferation but not cell spreading of colon cancer cells. Int. J. Cancer 122, 1757–1764.PubMedCrossRefGoogle Scholar
  8. Fang, S.H., Yuan, Y.M., Peng, F., Li, C.T., Zhang, L.H., Lu, Y.B., Zhang, W.P., and Wei, E.Q. (2009). Pranlukast attenuates ischemia-like injury in endothelial cells via inhibiting reactive oxygen species production and nuclear factor-kappaB activation. J. Cardiovasc. Pharmacol. 53, 77–85.PubMedCrossRefGoogle Scholar
  9. Fruehauf, J.P., and Meyskens, F.L., Jr. (2007). Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13, 789–794.PubMedCrossRefGoogle Scholar
  10. Funk, C.D., Keeney, D.S., Oliw, E.H., Boeglin, W.E., and Brash, A.R. (1996). Functional expression and cellular localization of a mouse epidermal lipoxygenase. J. Biol. Chem. 271, 23338–23344.PubMedCrossRefGoogle Scholar
  11. Hong, H.Y., Jeon, W.K., and Kim, B.C. (2008). Up-regulation of heme oxygenase-1 expression through the Rac1/NADPH oxidase/ROS/p38 signaling cascade mediates the anti-inflammatory effect of 15-deoxy-delta 12,14-prostaglandin J2 in murine macrophages. FEBS Lett. 582, 861–868.PubMedCrossRefGoogle Scholar
  12. Hu, Y., Rosen, D.G., Zhou, Y., Feng, L., Yang, G., Liu, J., and Huang, P. (2005). Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J. Biol. Chem. 280, 39485–39492.PubMedCrossRefGoogle Scholar
  13. Kim, C., Kim, J.Y., and Kim, J.H. (2008). Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Rep. 41, 555–559.PubMedCrossRefGoogle Scholar
  14. Kim, E.Y., Seo, J.M., Cho, K.J., and Kim, J.H. (2010a). Ras-induced invasion and metastasis are regulated by a leukotriene B4 receptor BLT2-linked pathway. Oncogene 29, 1167–1178.PubMedCrossRefGoogle Scholar
  15. Kim, E.Y., Seo, J.M., Kim, C., Lee, J.E., Lee, K.M., and Kim, J.H. (2010b). BLT2 promotes the invasion and metastasis of aggressive bladder cancer cells through a reactive oxygen specieslinked pathway. Free Radic. Biol. Med. 49, 1072–1081.PubMedCrossRefGoogle Scholar
  16. Kim, C., Ryu, H.C., and Kim, J.H. (2010c). Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp. Mol. Med. 42, 833–841.PubMedCrossRefGoogle Scholar
  17. Kim, G.Y., Lee, J.W., Ryu, H.C., Wei, J.D., Seong, C.M., and Kim, J.H. (2010d). Proinflammatory cytokine IL-1beta stimulates IL-8 synthesis in mast cells via a leukotriene B4 receptor 2-linked pathway, contributing to angiogenesis. J. Immunol. 184, 3946–3954.PubMedCrossRefGoogle Scholar
  18. Krieg, P., Heidt, M., Siebert, M., Kinzig, A., Marks, F., and Furstenberger, G. (2002). Epidermis-type lipoxygenases. Adv. Exp. Med. Biol. 507, 165–170.PubMedGoogle Scholar
  19. Kuhn, H., and Thiele, B.J. (1999). The diversity of the lipoxygenase family. Many sequence data but little information on biological significance. FEBS Lett. 449, 7–11.PubMedCrossRefGoogle Scholar
  20. Kumar, K.A., Arunasree, K.M., Roy, K.R., Reddy, N.P., Aparna, A., Reddy, G.V., and Reddanna, P. (2009). Effects of (15S)-hydroperoxyeicosatetraenoic acid and (15S)-hydroxyeicosatetraenoic acid on the acute-lymphoblastic-leukaemia cell line Jurkat: activation of the Fas-mediated death pathway. Biotechnol. Appl. Biochem. 52, 121–133.PubMedCrossRefGoogle Scholar
  21. Lindsay, M.A., Haddad, E.B., Rousell, J., Teixeira, M.M., Hellewell, P.G., Barnes, P.J., and Giembycz, M.A. (1998a). Role of the mitogen-activated protein kinases and tyrosine kinases during leukotriene B4-induced eosinophil activation. J. Leukoc. Biol. 64, 555–562.PubMedGoogle Scholar
  22. Lindsay, M.A., Perkins, R.S., Barnes, P.J., and Giembycz, M.A. (1998b). Leukotriene B4 activates the NADPH oxidase in eosinophils by a pertussis toxin-sensitive mechanism that is largely independent of arachidonic acid mobilization. J. Immunol. 160, 4526–4534.PubMedGoogle Scholar
  23. Mackarel, A.J., Russell, K.J., Brady, C.S., FitzGerald, M.X., and O’Connor, C.M. (2000). Interleukin-8 and leukotriene-B(4), but not formylmethionyl leucylphenylalanine, stimulate CD18-independent migration of neutrophils across human pulmonary endothelial cells in vitro. Am. J. Respir. Cell Mol. Biol. 23, 154–161.PubMedGoogle Scholar
  24. Mahipal, S.V., Subhashini, J., Reddy, M.C., Reddy, M.M., Anilkumar, K., Roy, K.R., Reddy, G.V., and Reddanna, P. (2007). Effect of 15-lipoxygenase metabolites, 15-(S)-HPETE and 15-(S)-HETE on chronic myelogenous leukemia cell line K-562: reactive oxygen species (ROS) mediate caspase-dependent apoptosis. Biochem. Pharmacol. 74, 202–214.PubMedCrossRefGoogle Scholar
  25. Mueller, C.F., Wassmann, K., Widder, J.D., Wassmann, S., Chen, C.H., Keuler, B., Kudin, A., Kunz, W.S., and Nickenig, G. (2008). Multidrug resistance protein-1 affects oxidative stress, endothelial dysfunction, and atherogenesis via leukotriene C4 export. Circulation 117, 2912–2918.PubMedCrossRefGoogle Scholar
  26. Ostuni, M.A., Gelinotte, M., Bizouarn, T., Baciou, L., and Houee-Levin, C. (2010). Targeting NADPH-oxidase by reactive oxygen species reveals an initial sensitive step in the assembly process. Free Radic. Biol. Med. 49, 900–907.PubMedCrossRefGoogle Scholar
  27. Peters-Golden, M., and Brock, T.G. (2003). 5-lipoxygenase and FLAP. Prostaglandins Leukot. Essent. Fatty Acids 69, 99–109.PubMedCrossRefGoogle Scholar
  28. Ravasi, S., Citro, S., Viviani, B., Capra, V., and Rovati, G.E. (2006). CysLT1 receptor-induced human airway smooth muscle cells proliferation requires ROS generation, EGF receptor transactivation and ERK1/2 phosphorylation. Respir. Res. 7, 42.PubMedCrossRefGoogle Scholar
  29. Ryu, H.C., Kim, C., Kim, J.Y., Chung, J.H., and Kim, J.H. (2010). UVB radiation induces apoptosis in keratinocytes by activating a pathway linked to “BLT2-reactive oxygen species“. J. Invest. Dermatol. 130, 1095–1106.PubMedCrossRefGoogle Scholar
  30. Sadok, A., Bourgarel-Rey, V., Gattacceca, F., Penel, C., Lehmann, M., and Kovacic, H. (2008). Nox1-dependent superoxide production controls colon adenocarcinoma cell migration. Biochim. Biophys. Acta 1783, 23–33.PubMedCrossRefGoogle Scholar
  31. Serezani, C.H., Aronoff, D.M., Jancar, S., Mancuso, P., and Peters-Golden, M. (2005a). Leukotrienes enhance the bactericidal activity of alveolar macrophages against Klebsiella pneumoniae through the activation of NADPH oxidase. Blood 106, 1067–1075.PubMedCrossRefGoogle Scholar
  32. Serezani, C.H., Aronoff, D.M., Jancar, S., and Peters-Golden, M. (2005b). Leukotriene B4 mediates p47phox phosphorylation and membrane translocation in polyunsaturated fatty acid-stimulated neutrophils. J. Leukoc. Biol. 78, 976–984.PubMedCrossRefGoogle Scholar
  33. Shin, S.W., Seo, C.Y., Han, H., Han, J.Y., Jeong, J.S., Kwak, J.Y., and Park, J.I. (2009). 15d-PGJ2 induces apoptosis by reactive oxygen species-mediated inactivation of Akt in leukemia and colorectal cancer cells and shows in vivo antitumor activity. Clin. Cancer Res. 15, 5414–5425.PubMedCrossRefGoogle Scholar
  34. Singh, R.K., Gupta, S., Dastidar, S., and Ray, A. (2009). Cysteinyl leukotrienes and their receptors: molecular and functional characteristics. Pharmacology 85, 336–349.CrossRefGoogle Scholar
  35. Steiner, D.R., Gonzalez, N.C., and Wood, J.G. (2001). Leukotriene B(4) promotes reactive oxidant generation and leukocyte adherence during acute hypoxia. J. Appl. Physiol. 91, 1160–1167.PubMedGoogle Scholar
  36. Tager, A.M., and Luster, A.D. (2003). BLT1 and BLT2: the leukotriene B(4) receptors. Prostaglandins Leukot. Essent. Fatty Acids 69, 123–134.PubMedCrossRefGoogle Scholar
  37. Thornber, K., Colomba, A., Ceccato, L., Delsol, G., Payrastre, B., and Gaits-Iacovoni, F. (2009). Reactive oxygen species and lipoxygenases regulate the oncogenicity of NPM-ALK-positive anaplastic large cell lymphomas. Oncogene 28, 2690–2696.PubMedCrossRefGoogle Scholar
  38. Wang, D., and Dubois, R.N. (2010). Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193.PubMedCrossRefGoogle Scholar
  39. Wittwer, J., and Hersberger, M. (2007). The two faces of the 15-lipoxygenase in atherosclerosis. Prostaglandins Leukot. Essent. Fatty Acids 77, 67–77.PubMedCrossRefGoogle Scholar
  40. Woo, C.H., Eom, Y.W., Yoo, M.H., You, H.J., Han, H.J., Song, W.K., Yoo, Y.J., Chun, J.S., and Kim, J.H. (2000a). Tumor necrosis factor-alpha generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J. Biol. Chem. 275, 32357–32362.PubMedCrossRefGoogle Scholar
  41. Woo, C.H., Lee, Z.W., Kim, B.C., Ha, K.S., and Kim, J.H. (2000b). Involvement of cytosolic phospholipase A2, and the subsequent release of arachidonic acid, in signalling by rac for the generation of intracellular reactive oxygen species in rat-2 fibroblasts. Biochem. J. 348 (Pt 3), 525–530.PubMedCrossRefGoogle Scholar
  42. Woo, C.H., You, H.J., Cho, S.H., Eom, Y.W., Chun, J.S., Yoo, Y.J., and Kim, J.H. (2002). Leukotriene B(4) stimulates Rac-ERK cascade to generate reactive oxygen species that mediates chemotaxis. J. Biol. Chem. 277, 8572–8578.PubMedCrossRefGoogle Scholar
  43. Woo, C.H., Yoo, M.H., You, H.J., Cho, S.H., Mun, Y.C., Seong, C.M., and Kim, J.H. (2003). Transepithelial migration of neutrophils in response to leukotriene B4 is mediated by a reactive oxygen species-extracellular signal-regulated kinase-linked cascade. J. Immunol. 170, 6273–6279.PubMedGoogle Scholar
  44. Yokomizo, T., Izumi, T., Chang, K., Takuwa, Y., and Shimizu, T. (1997). A G-protein-coupled receptor for leukotriene B4 that mediates chemotaxis. Nature 387, 620–624.PubMedCrossRefGoogle Scholar
  45. Yokomizo, T., Kato, K., Terawaki, K., Izumi, T., and Shimizu, T. (2000). A second leukotriene B (4) receptor BLT2. A new therapeutic target in inflammation and immunological disorders. J. Exp. Med. 192, 421–432.PubMedCrossRefGoogle Scholar
  46. Yokomizo, T., Kato, K., Hagiya, H., Izumi, T., and Shimizu, T. (2001). Hydroxyeicosanoids bind to and activate the low affinity leukotriene B4 receptor, BLT2. J. Biol. Chem. 276, 12454–12459.PubMedCrossRefGoogle Scholar
  47. Yun, M.R., Park, H.M., Seo, K.W., Lee, S.J., Im, D.S., and Kim, C.D. (2010). 5-Lipoxygenase plays an essential role in 4-HNE-enhanced ROS production in murine macrophages via activation of NADPH oxidase. Free Radic. Res. 44, 742–750.PubMedCrossRefGoogle Scholar
  48. Zhang, W., McQueen, T., Schober, W., Rassidakis, G., Andreeff, M., and Konopleva, M. (2005). Leukotriene B4 receptor inhibitor LY293111 induces cell cycle arrest and apoptosis in human anaplastic large-cell lymphoma cells via JNK phosphorylation. Leukemia 19, 1977–1984.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.College of Life Sciences and BiotechnologyKorea UniversitySeoulKorea

Personalised recommendations