Molecules and Cells

, Volume 31, Issue 5, pp 461–470

Modified apolipoprotein (apo) A-I by artificial sweetener causes severe premature cellular senescence and atherosclerosis with impairment of functional and structural properties of apoA-I in lipid-free and lipid-bound state



Long-term consumption of artificial sweeteners (AS) has been the recent focus of safety concerns. However, the potential risk of the AS in cardiovascular disease and lipoprotein metabolism has not been investigated sufficiently. We compared the influence of AS (aspartame, acesulfame K, and saccharin) and fructose in terms of functional and structural correlations of apolipoprotein (apo) A-I and high-density lipoproteins (HDL), which have atheroprotective effects. Long-term treatment of apoA-I with the sweetener at physiological concentration (3 mM for 168 h) resulted in loss of antioxidant and phospholipid binding activities with modification of secondary structure. The AS treated apoA-I exhibited proteolytic cleavage to produce 26 kDa-fragment. They showed pro-atherogenic properties in acetylated LDL phagocytosis of macrophages. Each sweetener alone or sweetener-treated apoA-I caused accelerated senescence in human dermal fibroblasts. These results suggest that long-term consumption of AS might accelerate atherosclerosis and senescence via impairment of function and structure of apoA-I and HDL.


apolipoprotein A-I artificial sweetener atherosclerosis high-density lipoprotein senescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benzie, I.F., and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal. Biochem. 239, 70–76.PubMedCrossRefGoogle Scholar
  2. Brewer, H.B. Jr., Ronan, R., Meng, M., and Bishop, C. (1986). Isolation and characterization of apolipoprotein A-I, A-II, and A-IV. Methods Enzymol. 128, 223–246.PubMedCrossRefGoogle Scholar
  3. Chen, Y.H., Yang, J.T., and Martinez, H.M. (1972). Determination of the secondary structures of proteins by circular dichroism and optical rotatory dispersion. Biochemistry 11, 4120–4131.PubMedCrossRefGoogle Scholar
  4. Cho, K.H. (2009a). Biomedicinal implications of high-density lipoprotein: its composition, structure, functions, and clinical applications. BMB Rep. 42, 393–400.PubMedGoogle Scholar
  5. Cho, K.H. (2009b). Synthesis of reconstituted high-density lipoprotein (rHDL) containing apoA-I and apoC-III: the functional role of apoC-III in rHDL. Mol. Cells 27, 291–297.PubMedCrossRefGoogle Scholar
  6. Cho, K.H., Park, S.H., Han, J.M., Kim, H.C., Choi, Y.K., and Choi, I. (2006). ApoA-I mutants V156K and R173C promote anti-inflammatory function and antioxidant activities. Eur. J. Clin. Invest. 36, 875–882.PubMedCrossRefGoogle Scholar
  7. Cho, K.H., Park, S.H., Han, J.M., Kim, H.C., Chung, Y.J., Choi, I., and Kim, J.R. (2007). A point mutant of apolipoprotein A-I, V156K, exhibited potent anti-oxidant and anti-atherosclerotic activity in hypercholesterolemic C57BL/6 mice. Exp. Mol. Med. 39, 160–169.PubMedGoogle Scholar
  8. DeGarmo, O., Ashworth, G.W., Eaker, C.M., and Munch, R.H. (1952) Hydrolytic stability of saccharin. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 41, 17–18.PubMedCrossRefGoogle Scholar
  9. Dimri, G.P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., Medrano, E.E., Linskens, M., Rubelj, I., Pereira-Smith, O., et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. USA 92, 9363–9367.PubMedCrossRefGoogle Scholar
  10. Eberini, I., Calabresi, L., Wait, R., Tedeschi, G., Pirillo, A., Puglisi, L., Sirtori, C.R., and Gianazza, E. (2002). Macrophage metalloproteinases degrade high-density-lipoprotein-associated apolipoprotein A-I at both the N- and C-termini. Biochem. J. 362, 627–634.PubMedCrossRefGoogle Scholar
  11. Eberini, I., Gianazza, E., Breghi, L., Klugmann, S., Calabresi, L., Gomaraschi, M., Mombelli, G., Brusoni, B., Wait, R., and Sirtori, C.R. (2007). Apolipoprotein A-I breakdown is induced by thrombolysis in coronary patients. Ann. Med. 39, 306–311.PubMedCrossRefGoogle Scholar
  12. Esterbauer, H., Striegl, G., Puhl, H., and Rotheneder, M. (1989). Continuous monitoring of in vitro oxidation of human low density lipoprotein. Free Radic. Res. Commun. 6, 67–75.PubMedCrossRefGoogle Scholar
  13. Feng, H., and Li, X.A. (2009). Dysfunctional high-density lipoprotein. Curr. Opin. Endocrinol. Diabetes Obes. 16, 156–162.PubMedCrossRefGoogle Scholar
  14. Fraenkal-Conrat, H. (1957). Methods for investigating essential groups for enzyme activity. Meth. Enzymol. 4, 247–269.CrossRefGoogle Scholar
  15. Jaleel, A., Henderson, G.C., Madden, B.J., Klaus, K.A., Morse, D.M., Gopala, S., and Nair, K.S. (2010). Identification of de novo synthesized and relatively older proteins: accelerated oxidative damage to de novo synthesized apolipoprotein A-1 in type 1 diabetes. Diabetes 59, 2366–2374.PubMedCrossRefGoogle Scholar
  16. Ji, Y., and Jonas, A. (1995). Properties of an N-terminal proteolytic fragment of apolipoprotein AI in solution and in reconstituted high density lipoproteins. J. Biol. Chem. 270, 11290–11297.PubMedCrossRefGoogle Scholar
  17. Liz, M.A., Gomes, C.M., Saraiva, M.J., and Sousa, M.M. (2007). ApoA-I cleaved by transthyretin has reduced ability to promote cholesterol efflux and increased amyloidogenicity. J. Lipid Res. 48, 2385–2395.PubMedCrossRefGoogle Scholar
  18. Markwell, M.A., Haas, S.M., Bieber, L.L., and Tolbert, N.E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal. Biochem. 87, 206–210.PubMedCrossRefGoogle Scholar
  19. McPherson, J.D., Shilton, B.H., and Walton, D.J. (1988). Role of fructose in glycation and cross-linking of proteins. Biochemistry 27, 1901–1907.PubMedCrossRefGoogle Scholar
  20. Mukherjee, A., and Chakrabarti, J. (1997). In vivo cytogenetic studies on mice exposed to acesulfame-K-a non-nutritive sweetener. Food Chem. Toxicol. 35, 1177–1179.PubMedCrossRefGoogle Scholar
  21. Nofer, J.R., Walter, M., and Assmann, G. (2005). Current understanding of the role of high-density lipoproteins in atherosclerosis and senescence. Expert Rev. Cardiovasc. Ther. 3, 1071–1086.PubMedCrossRefGoogle Scholar
  22. Odegaard, A.O., Koh, W.P., Arakawa, K., Yu, M.C., and Pereira, M.A. (2010). Soft drink and juice consumption and risk of physician-diagnosed incident type 2 diabetes: the Singapore Chinese Health Study. Am. J. Epidemiol. 171, 701–708.PubMedCrossRefGoogle Scholar
  23. Oliveira-da-Silva, A., Vieira, F.B., Cristina-Rodrigues, F., Filgueiras, C.C., Manhães, A.C., and Abreu-Villaça, Y. (2009). Increased apoptosis and reduced neuronal and glial densities in the hippocampus due to nicotine and ethanol exposure in adolescent mice. Int. J. Dev. Neurosci. 27, 539–548.PubMedCrossRefGoogle Scholar
  24. Olney, J.W., Farber, N.B., Spitznagel, E., and Robins, L.N. (1996). Increasing brain tumor rates: is there a link to aspartame? J. Neuropathol. Exp. Neurol. 55, 1115–1123.PubMedCrossRefGoogle Scholar
  25. Park, K.H., and Cho, K.H. (2011) High-density lipoproteins (HDL) from elderly and reconstituted HDL containing glycated apolipoproteins A-I share pro-atherosclerotic and pro-senescent properties with increased cholesterol influx. J. Gerontol. A. Biol. Sci. Med. Sci. 66, 511–520.PubMedCrossRefGoogle Scholar
  26. Park, K.H., Jang, W., Kim, K.Y., Kim, J.R., and Cho, K.H. (2010a). Fructated apolipoprotein A-I showed severe structural modification and loss of beneficial functions in lipid-free and lipid-bound state with acceleration of atherosclerosis and senescence. Biochem. Biophys. Res. Commun. 392, 295–300.PubMedCrossRefGoogle Scholar
  27. Park, K.H., Shin, D.G., Kim, J.R., and Cho, K.H. (2010b). Senescence-related truncation and multimerization of apolipoprotein AI in high-density lipoprotein with an elevated level of advanced glycated end products and cholesteryl ester transfer activity. J. Gerontol. A Biol. Sci. Med. Sci. 65, 600–610.PubMedCrossRefGoogle Scholar
  28. Park, K.H., Yun, C.O., Kwon, O.J., Kim, C.H., Kim, J.R., and Cho, K.H. (2010c). Enhanced delivery of an adenovirus using proteoliposomes containing WT or V156K apolipoproteinA-I and dimyristoylphosphatidylcholine. Hum. Gene Ther. 21, 579–587.PubMedCrossRefGoogle Scholar
  29. Pownall, H.J., Massey, J.B., Kusserow, S.K., and Gotto, A.M. Jr. (1978). Kinetics of lipid-protein interactions: interaction of apolipoprotein A-I from human plasma high density lipoproteins with phosphatidylcholines. Biochemistry 17, 1183–1188.PubMedCrossRefGoogle Scholar
  30. Reuber, M.D. (1978). Carcinogenicity of saccharin. Environ. Health Perspect 25, 173–200.PubMedGoogle Scholar
  31. Rye, K.A., and Barter, P.J. (2008). Antiinflammatory actions of HDL: a new insight. Arterioscler. Thromb. Vasc. Biol. 28, 1890–1891.PubMedCrossRefGoogle Scholar
  32. Sasaki, Y.F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., Taniguchi, K., and Tsuda, S. (2002) The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103–119.PubMedGoogle Scholar
  33. Scarmeas, N. (2007). Invited commentary: lipoproteins and dementia — Is it the apolipoprotein A-I? Am. J. Epidemiol. 165, 993–997.PubMedCrossRefGoogle Scholar
  34. Seo, S.J., Park, K.H., and Cho, K.H. (2008). Apolipophorin III from Hyphantria cunea shows different anti-oxidant ability against LDL oxidation in the lipid-free and lipid-bound state. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 151, 433–439.PubMedCrossRefGoogle Scholar
  35. Staros, J.V. (1982). N-hydroxysulfosuccinimide active esters: bis(Nhydroxy-sulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry 21, 3950–3955.PubMedCrossRefGoogle Scholar
  36. Upmeier, E., Lavonius, S., Lehtonen, A., Viitanen, M., Isoaho, H., and Arve, S. (2009). Serum lipids and their association with mortality in the elderly: a prospective cohort study. Aging Clin. Exp. Res. 21, 424–430.PubMedGoogle Scholar
  37. Van den Eeden, S.K., Koepsell, T.D., Longstreth, W.T. Jr., van Belle, G., Daling, J.R., and McKnight, B. (1994). Aspartame ingestion and headaches: a randomized crossover trial. Neurology 44, 1787–1793.PubMedGoogle Scholar
  38. Walter, M. (2009). Interrelationships among HDL metabolism, aging, and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 29, 1244–1250.PubMedCrossRefGoogle Scholar
  39. Weihrauch, M.R., and Diehl, V. (2004). Artificial sweeteners-do they bear a carcinogenic risk? Ann. Oncol. 15, 1460–1465.PubMedCrossRefGoogle Scholar
  40. Zeng, R.Z., Kim, H.G., Kim, N.R., Lee, H.Y., Jung, B.J., Ko, M.Y., Lee, S.Y., and Chung, D.K. (2010). Protein expression changes in human monocytic THP-1 cells treated with lipoteichoic acid from Lactobacillus plantarum and Staphylococcus aureus. Mol. Cells 29, 585–594PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.School of BiotechnologyYeungnam UniversityGyeongsanKorea
  2. 2.Department of Fundamental Medical and Pharmaceutical Sciences, CU-Leaders CollegeCatholic University of DaeguGyeongsanKorea
  3. 3.Research Institute of Protein SensorYeungnam UniversityGyeongsanKorea

Personalised recommendations