Advertisement

Molecules and Cells

, Volume 31, Issue 5, pp 431–436 | Cite as

Quantitative analysis of retromer complex-related genes during embryo development in the mouse

  • Sang-Je Park
  • Jae-Won Huh
  • Young-Hyun Kim
  • Ji-Su Kim
  • Bong-Seok Song
  • Sang-Rae Lee
  • Sun-Uk Kim
  • Heui-Soo Kim
  • Kazuhiko Imakawa
  • Kyu-Tae ChangEmail author
Molecules and Cells
  • 95 Downloads

Abstract

The retromer complex is a heteropentameric protein unit associated with retrograde transport of cargo proteins from endosomes to the trans-Golgi network. Functional silencing study of the Vps26a gene indicated the important role of the retromer complex during early developmental stages in the mouse. However, individual expression patterns and quantitative analysis of individual members of the retromer complex during the early developmental stages has not been investigated. In this study, we conducted quantitative expression analysis of six retromer complex genes (Vps26a, Vps26b, Vps29, Vps35, Snx1, and Snx2) and one related receptor gene (Ci-mpr) during the eleven embryonic stages with normal MEF (mouse embryonic fibroblast) and Vps26a−/− MEF cells. Remarkably, except for Vps26a (maternal expression pattern), all tested genes showed maternal-zygotic expression patterns. And five genes (Vps26b, Vps29, Vps35, Snx2, and Ci-mpr) showed a pattern of decreased expression in Vps26a−/− MEF cells by comparative analysis between normal MEF and Vps26a−/− MEF cells. However, the Snx1 gene showed a pattern of increased expression in Vps26a−/− MEF cells. From our results, we could assume that retromer complexrelated genes have important roles during oocyte development. However, in the preimplantation stage, they did not have significant roles.

Keywords

mouse embryo mouse embryonic fibroblast real-time RT-PCR retromer complex 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amati, F., Biancolella, M., Farcomeni, A., Giallonardi, S., Bueno, S., Minella, D., Vecchione, L., Chillemi, G., Desideri, A., and Novelli, G. (2007). Dynamic changes in gene expression profiles of 22q11 and related orthologous genes during mouse development. Gene 391, 91–102.PubMedCrossRefGoogle Scholar
  2. Arighi, C.N., Hartnell, L.M., Aguilar, R.C., Haft, C.R., and Bonifacino, J.S. (2004). Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J. Cell Biol. 165, 123–133.PubMedCrossRefGoogle Scholar
  3. Bachhawat, A.K., Suhan, J., and Jones, E.W. (1994). The yeast homolog of H <beta> 58, a mouse gene essential for embryogenesis, performs a role in the delivery of proteins to the vacuole. Genes Dev. 8, 1379–1387.PubMedCrossRefGoogle Scholar
  4. Belenkaya, T.Y., Wu, Y., Tang, X., Zhou, B., Cheng, L., Sharma, Y.V., Yan, D., Selva, E.M., and Lin, X. (2008). The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans-Golgi network. Dev. Cell 14, 120–131.PubMedCrossRefGoogle Scholar
  5. Bonifacino, J.S., and Hurley, J.H. (2008). Retromer. Curr. Opin. Cell Biol. 20, 427–436.PubMedCrossRefGoogle Scholar
  6. Chen, D., Xiao, H., Zhang, K., Wang, B., Gao, Z., Jian, Y., Qi, X., Sun, J., Miao, L., and Yang, C. (2010). Retromer is required for apoptotic cell clearance by phagocytic receptor recycling. Science 327, 1261–1264.PubMedCrossRefGoogle Scholar
  7. Collins, B.M. (2008). The structure and function of the retromer protein complex. Traffic 9, 1811–1822.PubMedCrossRefGoogle Scholar
  8. Collins, B.M., Norwood, S.J., Kerr, M.C., Mahony, D., Seaman, M.N., Teasdale, R.D., and Owen, D.J. (2008). Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366–379.PubMedCrossRefGoogle Scholar
  9. Hamatani, T., Carter, M.G., Sharov, A.A., and Ko, M.S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Dev. Cell 6, 117–131.PubMedCrossRefGoogle Scholar
  10. Hierro, A., Rojas, A.L., Rojas, R., Murthy, N., Effantin, G., Kajava, A.V., Steven, A.C., Bonifacino, J.S., and Hurley, J.H. (2007). Functional architecture of the retromer cargo-recognition complex. Nature 449, 1063–1067.PubMedCrossRefGoogle Scholar
  11. Kerr, M.C., Bennetts, J.S., Simpson, F., Thomas, E.C., Flegg, C., Gleeson, P.A., Wicking, C., and Teasdale, R.D. (2005). A novel mammalian retromer component, Vps26B. Traffic 6, 991–1001.PubMedCrossRefGoogle Scholar
  12. Kurten, R.C., Cadena, D.L., and Gill, G.N. (1996). Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 272, 1008–1010.PubMedCrossRefGoogle Scholar
  13. Lee, J.J., Radice, G., Perkins, C.P., and Costantini, F. (1992). Identification and characterization of a novel, evolutionarily conserved gene disrupted by the murine H beta 58 embryonic lethal transgene insertion. Development 115, 277–288.PubMedGoogle Scholar
  14. Mamo, S., Gal, A.B., Bodo, S., and Dinnyes, A. (2007). Quantitative evaluation and selection of reference genes in mouse oocytes and embryos cultured in vivo and in vitro. BMC Dev. Biol. 7, 14.PubMedCrossRefGoogle Scholar
  15. Muhammad, A., Flores, I., Zhang, H., Yu, R., Staniszewski, A., Planel, E., Herman, M., Ho, L., Kreber, R., Honig, L.S., et al. (2008). Retromer deficiency observed in Alzheimer’s disease causes hippocampal dysfunction, neurodegeneration, and Abeta accumulation. Proc. Natl. Acad. Sci. USA 105, 7327–7332.PubMedCrossRefGoogle Scholar
  16. Nisar, S., Kelly, E., Cullen, P.J., and Mundell, S.J. (2010). Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent. Traffic 11, 508–519.PubMedCrossRefGoogle Scholar
  17. Port, F., Kuster, M., Herr, P., Furger, E., Banziger, C., Hausmann, G., and Basler, K. (2008). Wingless secretion promotes and requires retromer-dependent cycling of Wntless. Nat. Cell Biol. 10, 178–185.PubMedCrossRefGoogle Scholar
  18. Radice, G., Lee, J.J., and Costantini, F. (1991). H beta 58, an insertional mutation affecting early postimplantation development of the mouse embryo. Development 111, 801–811.PubMedGoogle Scholar
  19. Rojas, R., Kametaka, S., Haft, C.R., and Bonifacino, J.S. (2007). Interchangeable but essential functions of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol. Cell Biol. 27, 1112–1124.PubMedCrossRefGoogle Scholar
  20. Rozen, S., and Skaletsky, H. (2000). Primer3 on the www for general users and for biologist programmers. Methods Mol. Biol. 132, 365–386.PubMedGoogle Scholar
  21. Schwarz, D.G., Griffin, C.T., Schneider, E.A., Yee, D., and Magnuson, T. (2002). Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. Mol. Biol. Cell 13, 3588–3600.PubMedCrossRefGoogle Scholar
  22. Seaman, M.N. (2004). Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J. Cell Biol. 165, 111–122.PubMedCrossRefGoogle Scholar
  23. Seaman, M.N. (2005). Recycle your receptors with retromer. Trends Cell Biol. 15, 68–75.PubMedCrossRefGoogle Scholar
  24. Seaman, M.N. (2007). Identification of a novel conserved sorting motif required for retromer-mediated endosome-to-TGN retrieval. J. Cell Sci. 120, 2378–2389.PubMedCrossRefGoogle Scholar
  25. Seaman, M.N., McCaffery, J.M., and Emr, S.D. (1998). A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J. Cell Biol. 142, 665–681.PubMedCrossRefGoogle Scholar
  26. Shi, H., Rojas, R., Bonifacino, J.S., and Hurley, J.H. (2006). The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its C-terminal domain. Nat. Struct. Mol. Biol. 13, 540–548.PubMedCrossRefGoogle Scholar
  27. Small, S.A. (2008). Retromer sorting: a pathogenic pathway in lateonset Alzheimer disease. Arch. Neurol. 65, 323–328.PubMedCrossRefGoogle Scholar
  28. Small, S.A., Kent, K., Pierce, A., Leung, C., Kang, M.S., Okada, H., Honig, L., Vonsattel, J.P., and Kim, T.W. (2005). Model-guided microarray implicates the retromer complex in Alzheimer’s disease. Ann. Neurol. 58, 909–919.PubMedCrossRefGoogle Scholar
  29. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A., and Speleman, F. (2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034.Google Scholar
  30. Verges, M., Luton, F., Gruber, C., Tiemann, F., Reinders, L.G., Huang, L., Burlingame, A.L., Haft, C.R., and Mostov, K.E. (2004). The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat. Cell Biol. 6, 763–769.PubMedCrossRefGoogle Scholar
  31. Wang, Z.Q., Fung, M.R., Barlow, D.P., and Wagner, E.F. (1994). Regulation of embryonic growth and lysosomal targeting by the imprinted Igf2/Mpr gene. Nature 372, 464–467.PubMedCrossRefGoogle Scholar
  32. Wang, Y., Zhou, Y., Szabo, K., Haft, C.R., and Trejo, J. (2002). Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol. Biol. Cell 13, 1965–1976.PubMedCrossRefGoogle Scholar
  33. Wang, T.H., Chang, C.L., Wu, H.M., Chiu, Y.M., Chen, C.K., and Wang, H.S. (2006). Insulin-like growth factor-II (IGF-II), IGFbinding protein-3 (IGFBP-3), and IGFBP-4 in follicular fluid are associated with oocyte maturation and embryo development. Fertil. Steril. 86, 1392–1401.PubMedCrossRefGoogle Scholar
  34. Worby, C.A., and Dixon, J.E. (2002). Sorting out the cellular functions of sorting nexins. Nat. Rev. Mol. Cell Biol. 3, 919–931.PubMedCrossRefGoogle Scholar
  35. Zeng, F., Baldwin, D.A., and Schultz, R.M. (2004). Transcript profiling during preimplantation mouse development. Dev. Biol. 272, 483–496.PubMedCrossRefGoogle Scholar
  36. Zhao, X., Nothwehr, S., Lara-Lemus, R., Zhang, B.Y., Peter, H., and Arvan, P. (2007). Dominant-negative behavior of mammalian Vps35 in yeast requires a conserved PRLYL motif involved in retromer assembly. Traffic 8, 1829–1840.PubMedCrossRefGoogle Scholar
  37. Zhong, Q., Watson, M.J., Lazar, C.S., Hounslow, A.M., Waltho, J.P., and Gill, G.N. (2005). Determinants of the endosomal localization of sorting nexin 1. Mol. Biol. Cell 16, 2049–2057.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Sang-Je Park
    • 1
    • 2
  • Jae-Won Huh
    • 1
  • Young-Hyun Kim
    • 1
    • 3
  • Ji-Su Kim
    • 1
  • Bong-Seok Song
    • 1
  • Sang-Rae Lee
    • 1
  • Sun-Uk Kim
    • 1
  • Heui-Soo Kim
    • 2
  • Kazuhiko Imakawa
    • 4
  • Kyu-Tae Chang
    • 1
    • 3
    Email author
  1. 1.National Primate Research CenterKorea Research Institute of Bioscience and BiotechnologyOchangKorea
  2. 2.Department of Biological Sciences, College of Natural SciencesPusan National UniversityBusanKorea
  3. 3.Department of Functional GenomicsUniversity of Science and TechnologyDaejeonKorea
  4. 4.Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan

Personalised recommendations