Molecules and Cells

, Volume 32, Issue 6, pp 579–587 | Cite as

Quantitative trait loci for cold tolerance of rice recombinant inbred lines in low temperature environments

  • Wenzhu Jiang
  • Yong-Mei Jin
  • Joohyun Lee
  • Kang-Ie Lee
  • Rihua Piao
  • Longzhi Han
  • Jin-Chul Shin
  • Rong-De Jin
  • Tiehua Cao
  • Hong-Yu Pan
  • Xinglin Du
  • Hee-Jong Koh
Article

Abstract

Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for coldrelated traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.

Keywords

cold tolerance near isogenic line quantitative trait loci rice RIL 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andaya, V.C., and Mackill, D.J. (2003). QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theor. Appl. Genet. 106, 1084–1090.PubMedGoogle Scholar
  2. Cho, Y.I., Jiang, W., Chin, J.H., Piao, Z., Cho, Y.G., McCouch, S.R., and Koh, H.J. (2007). Identification of QTLs associated with physiological nitrogen use efficiency in rice. Mol. Cells 23, 72–79.PubMedGoogle Scholar
  3. Dai, L., Lin, X.H., Ye, C.R., Ise, K., Saito, K., Kato, A., Xu, F.R., Yu, T.Q., and Zhang, D.P. (2004). Identification of quantitative trait loci controlling cold tolerance at the reproductive stage in Yunnan landrace of rice, Kunmingxiaobaigu. Breed. Sci. 54, 253–258.CrossRefGoogle Scholar
  4. Fan, C.C., Yu, X.Q., Xing, Y.Z., Xu, C.G., Luo, L.J., and Zhang, Q. (2005). The main effects, epistatic effects and environmental interactions of QTLs on the cooking and eating quality of rice in a doubled-haploid line population. Theor. Appl. Genet. 110, 1445–1452.PubMedCrossRefGoogle Scholar
  5. Farrell, T.C., Fox, K.M., Williams, R.L., and Fukai, S. (2006). Genotypic variation for cold tolerance during reproductive development in rice: screening with cold air and cold water. Field Crops Res. 98, 178–194.CrossRefGoogle Scholar
  6. Hill, J., Becker, H.C., and Tigerstedt, P.M.A. (1998). Quantitative and ecological aspects of plant breeding. Chapman & Hall, London, pp. 275.Google Scholar
  7. Javier, E.L., and Toledo, M.C. (2001). Finding genetic donors for cold tolerance the INGER gene pool. In ACIAR Proceedings 101; Increased Lowland Rice Production in the Mekong Region, S. Fukai and J. Basnayake (eds.), Australian Center for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601, pp. 147–151.Google Scholar
  8. Jiang, W., Lee, J., Chu, S.H., Ham, T.H., Woo, M.O., Cho, Y.I., Chin, J.H., Han, L.Z., Xuan, Y., Yuan, D., et al. (2010). Genotype × environment interactions for chilling tolerance of rice recombinant inbred lines under different low temperature environments. Field Crops Res. 117, 226–236.CrossRefGoogle Scholar
  9. Jiang, W., Lee, J., Jin, Y.M., Qiao, Y., Piao, R., Jang, S.M., Woo, M.O., Kwon, S.W., Liu, X., Pan, H.Y., et al., (2011). Identification of QTLs for seed germination capability after various storage periods using two RIL populations in rice. Mol. Cells 31, 385–392.PubMedCrossRefGoogle Scholar
  10. Kim, K.M., Kown, Y.S., Lee, J.J., Eun, M.Y., and Shon, J.K. (2004). QTL mapping and molecular marker analysis for the resistance of rice to ozone. Mol. Cells 17, 151–155.PubMedGoogle Scholar
  11. Kovi, M.R., Bai, X., Mao, D., and Xing, Y. (2011). Impact of seasonal changes on spikelets per panicle, panicle length and plant height in rice (Oryza sativa L.). Euphytica 179, 319–331.CrossRefGoogle Scholar
  12. Kuroki, M., Saito, K., Matsuba, S., Yokogami, N., Shimizu, H., Ando, I., and Sato, Y. (2007). A quantitative trait locus for cold tolerance at the booting stage on rice chromosome 8. Theor. Appl. Genet. 115, 593–600.PubMedCrossRefGoogle Scholar
  13. Kuroki, M., Saito, K., Matsuba, S., Yokogami, N., Shimizu, H., Ando, I., and Sato, Y. (2009). Quantitative trait locus analysis for cold tolerance at the booting stage in a rice cultivar, Hatsushizuku. Jpn. Agric. Res. Quart. 43, 115–121.Google Scholar
  14. Lee, M.H. (2001). Low temperature tolerance in rice: the Korean experience. In ACIAR Proceedings 101; Increased Lowland Rice Production in the Mekong Region, S. Fukai and J. Basnayake (eds.), Australian Center for International Agricultural Research, GPO Box 1571, Canberra, ACT 2601, pp. 138–146.Google Scholar
  15. Li, H.B., Wang, J., Liu, A.M., Liu, K.D., Zhang, Q., and Zou, J.S. (1997). Genetic basis of low-temperature-sensitive sterility in indica-japonica hybrids of rice as determined by RFLP analysis. Theor. Appl. Genet. 95, 1092–1097.CrossRefGoogle Scholar
  16. Li, Z.K., Yu, S.B., Lafitte, H., Huang, N., Courtois, B., Hittalmani, S., Vijayakumar, C., Liu, G.F., Wang, G.C., Shashidhar, H., et al. (2003). QTL x environment interactions in rice. I. Heading date and plant height. Theor. Appl. Genet. 108, 141–153.PubMedCrossRefGoogle Scholar
  17. Li, Z., Mu, P., Li, C., Zhang, H., Li, Z., Gao, Y., and Wang, X. (2005). QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments. Theor. Appl. Genet. 110, 1244–1252.PubMedCrossRefGoogle Scholar
  18. Liu, F., Sun, C., Tan, L., Fu, Y., Li, D., and Wang, X. (2003). Identification and mapping of quantitative trait loci controlling coldtolerance of Chinese common wild rice (O. rufipogon Griff.) at booting to flowering stages. Chin. Sci. Bull. 48, 2068–2071.CrossRefGoogle Scholar
  19. Mori, M., Onishi, K., Tokizono, Y., Shinada, H., Yoshimura, T., Numao, Y., Miura, H., and Sato, T. (2011). Detection of a novel quantitative trait locus for cold tolerance at the booting stage derived from a troppical japonica rice variety silewah. Breed. Sci. 61, 61–68.CrossRefGoogle Scholar
  20. Nelson, J.C. (1997). QGENE, software for marker-based genome analysis and breeding. Mol. Breed. 3, 239–245.CrossRefGoogle Scholar
  21. Oh, C.S., Choi, Y.H., Lee, S.J., Yoon, D.B., Moon, H.P., and Ahn, S.N. (2004). Mapping of quantitative trait loci for cold tolerance in weedy rice. Breed. Sci. 54, 373–380.CrossRefGoogle Scholar
  22. Park, I.S., Park, S.K., Kim, S.L., Song, B.H., Jiang, W., Cho, Y.I., Koh, H.J., and Cho, Y.G. (2004). QTL analysis of agronomic traits and intracellular substances related to cold tolerance in rice (Oryza sativa L.). Korean J. Breed. 36, 9–19.Google Scholar
  23. Saito, K., Miura, K., Nagano, K., Hayano-Saito, Y., Araki, H., and Kato, A. (1995). Chromosomal location of quantitative trait loci for cool tolerance at the booting stage in rice variety ‘Norin-PL8’. Breed. Sci. 45, 337–340.Google Scholar
  24. Saito, K., Miura, K., Nagano, K., Hayano-Saito, Y., Araki, H., and Kato, A. (2001). Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor. Appl. Genet. 103, 862–868.CrossRefGoogle Scholar
  25. Saito, K., Hayano-Saito, Y., Maruyama-Funatsuki, W., Sato, Y., and Kato, A. (2004). Physical mapping and putative candidate gene identification of a quantitative trait locus Ctb1 for cold tolerance at the booting stage of rice. Theor. Appl. Genet. 109, 515–522.PubMedCrossRefGoogle Scholar
  26. Saito, K., Hayano-saito, Y., Kuroki, M., and Sato, Y. (2010). Mapbased cloning of the rice cold tolerance gene Ctb1. Plant Sci. 179, 97–102.CrossRefGoogle Scholar
  27. SAS Institute Inc. (1999) SAS/Stat User’s Guide, Version 8.2.Google Scholar
  28. SAS institute, Inc., Cary, NC, USA. Satake, T. (1976). Sterility-type cold injury in paddy rice plants. In: Proceedings of the symposium on climate and rice. IRRI, Los Baños, Philippines, pp. 281–300.Google Scholar
  29. Suh, J.P., Jeung, J.U., Lee, J.I., Choi, Y.H., Yea, J.D., Virk, P.S., Mackill, D.J., and Jena, K.K. (2010). Identification and analysis of QTLs controlling cold tolerance at the reproductive stage and validation of effective QTLs in cold-tolerant genotypes of rice (Oryza sativa L.). Theor. Appl. Genet. 120, 985–995.PubMedCrossRefGoogle Scholar
  30. Takeuchi, Y., Hayasaka, H., Chiba, B., Tanaka, I., Shimono, T., Yamagishi, M., Nagano, K., Sasaki, T., and Yano, M. (2001). Mapping quantitative trait loci controlling cool-temperature tolerance at booting stage in temperate japonica rice. Breed. Sci. 51, 191–197.CrossRefGoogle Scholar
  31. Talukder, Z.I., Mcdonald, A.J.S., and Price, A.H. (2005). Loci controlling partial resistance to rice blast do not show marked QTL × environment interaction when plant nitrogen status alters disease severity. New Phytol. 168, 455–464.PubMedCrossRefGoogle Scholar
  32. Wang, D.L., Zhu, J., Li, Z.K., and Paterson, A.H. (1999). Mapping QTLs with epistatic effects and QTL × environment interactions by mixed linear model approaches. Theor. Appl. Genet. 99, 1255–1264.CrossRefGoogle Scholar
  33. Wu, R., and Garg, A. (2003). Engineering rice plant with trehaloseproducing genes improves tolerance to drought, salt and low temperature. ISB news report, March 2003. Covering agriculGoogle Scholar
  34. Xu, L.M., Zhou, L., Zeng, Y.W., Wang, F.M., Zhang, H.L., Shen, S.Q., and Li, Z.C. (2008). Identification and mapping of quantitative trait loci for cold tolerance at the booting stage in a japonica rice near-isogenic line. Plant Sci. 174, 340–347.CrossRefGoogle Scholar
  35. Yang, D.L., Jing, R.L., Chang, X.P., and Li, W. (2007). Identification of quantitative trait loci and environmental interactions for accumulation and remobilization of water-soluble carbohydrates in wheat (Triticum aestivum L.) stems. Genetics 176, 571–584.PubMedCrossRefGoogle Scholar
  36. Ye, C., Fukai, S., Godwin, D.I., Reinke, R., Snell, P., Schiller, J., and Basnayake, J. (2009). Cold tolerance in rice varieties at different growth stages. Crop Pasture Sci. 60, 1–11.CrossRefGoogle Scholar
  37. Ye, C., Fukai, S., Godwin, D.I., Koh, H., Reinke, R., Zhou, Y., Lambrides, C., Jiang, W., Snell, P., and Redoña, E. (2010). A QTL controlling low temperature induced spikelet sterility at booting stage in rice. Euphytica 176, 291–301.CrossRefGoogle Scholar
  38. Zhou, L., Zeng, Y., Zheng, W., Tang, B., Yang, S., Zhang, H., Li, J., and Li, Z. (2010). Fine mapping a QTL qCTB7 for cold tolerance at the booting stage on rice chromosome 7 using a nearisogenic rice. Theor. Appl. Genet. 121, 895–905.PubMedCrossRefGoogle Scholar
  39. Zhuang, J.Y., Fan, Y.Y., Rao, Z.M., Wu, J.L., Xia, Y.W., and Zheng, K.L. (2002). Analysis on additive effects and additive-by-additive epistatic effects of QTLs for yield traits in a recombinant inbred line population of rice. Theor. Appl. Genet. 105, 1137–1145.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Wenzhu Jiang
    • 1
  • Yong-Mei Jin
    • 2
  • Joohyun Lee
    • 2
  • Kang-Ie Lee
    • 2
  • Rihua Piao
    • 2
  • Longzhi Han
    • 3
  • Jin-Chul Shin
    • 4
  • Rong-De Jin
    • 5
  • Tiehua Cao
    • 5
  • Hong-Yu Pan
    • 1
  • Xinglin Du
    • 1
  • Hee-Jong Koh
    • 2
  1. 1.College of Plant ScienceJilin UniversityChangchunChina
  2. 2.Department of Plant Science, Research Institute of Agriculture and Life Sciences, and Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea
  3. 3.Key Laboratory of Crop Germplasm Resources and Biotechnology, Ministry of Agriculture, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  4. 4.National Institute of Crop ScienceRural Development AdministrationSuwonKorea
  5. 5.Jilin Academy of Agricultural SciencesChangchunChina

Personalised recommendations