Molecules and Cells

, 32:295 | Cite as

The floral repressor BROTHER OF FT AND TFL1 (BFT) modulates flowering initiation under high salinity in Arabidopsis

  • Jae Yong Ryu
  • Chung-Mo ParkEmail author
  • Pil Joon SeoEmail author


Floral transition is coordinately regulated by both endogenous and exogenous cues to ensure reproductive success under fluctuating environmental conditions. Abiotic stress conditions, including drought and high salinity, also have considerable influence on this developmental process. However, the signaling components and molecular mechanisms underlying the regulation of floral transition by environmental factors have not yet been defined. In this work, we show that the Arabidopsis BROTHER OF FT AND TFL1 (BFT) gene, which encodes a member of the FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1) family, regulates floral transition under conditions of high salinity. The BFT gene was transcriptionally induced by high salinity in an abscisic acid (ABA)-dependent manner. Transgenic plants overexpressing the BFT gene (35S:BFT) and BFT-deficient mutant (bft-2) plants were phenotypically indistinguishable from Col-0 plants in seed germination and seedling growth under high salinity. In contrast, although the floral transition was delayed significantly in Col-0 plants under high salinity, that of the bft-2 mutant was not affected by high salinity. We also observed that expression of the APETALA1 (AP1) gene was suppressed to a lesser degree in the bft-2 mutant than in Col-0 plants. Taken together, our observations suggest that BFT mediates salt stress-responsive flowering, providing an adaptive strategy that ensures reproductive success under unfavorable stress conditions.


abscisic acid Arabidopsis BFT flowering salt stress 


  1. Abe, M., Kobayashi, Y., Yamamoto, S., Daimon, Y., Yamaguchi, A., Ikeda, Y., Ichinoki, H., Notaguchi, M., Goto, K., and Araki, T. (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309, 1052–1056.PubMedCrossRefGoogle Scholar
  2. Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J., and Harberd, N.P. (2006). Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94.PubMedCrossRefGoogle Scholar
  3. Ahn, J.H., Miller, D., Winter, V.J., Banfield, M.J., Lee, J.H., Yoo, S.Y., Henz, S.R., Brady, R.L., and Weigel, D. (2006). A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J. 25, 605–614.PubMedCrossRefGoogle Scholar
  4. Amasino, R. (2010). Seasonal and developmental timing of flowering. Plant J. 61, 1001–1013.PubMedCrossRefGoogle Scholar
  5. Bäurle, I., and Dean, C. (2006). The timing of developmental transitions in plants. Cell 125, 655–664.PubMedCrossRefGoogle Scholar
  6. Bittner, F., Oreb, M., and Mendel, R.R. (2001). ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J. Biol. Chem. 276, 40381–40384.PubMedCrossRefGoogle Scholar
  7. Blázquez, M.A., Ahn, J.H., and Weigel, D. (2003). A thermosensory pathway controlling flowering time in Arabidopsis thaliana. Nat. Genet. 33, 168–171.PubMedCrossRefGoogle Scholar
  8. Chung, K.S., Yoo, S.Y., Yoo, S.J., Lee, J.S., and Ahn, J.H. (2010). BROTHER OF FT AND TFL1 (BFT), a member of the FT/TFL1 family, shows distinct pattern of expression during the vegetative growth of Arabidopsis. Plant Signal. Behav. 5, 1102–1104.PubMedCrossRefGoogle Scholar
  9. Clough, S.J., and Bent, A.F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.PubMedCrossRefGoogle Scholar
  10. Conti, L., and Bradley, D. (2007). TERMINAL FLOWER1 is a mobile signal controlling Arabidopsis architecture. Plant Cell 19, 767–778.PubMedCrossRefGoogle Scholar
  11. Corbesier, L., and Coupland, G. (2006). The quest for florigen: a review of recent progress. J. Exp. Bot. 57, 3395–3403.PubMedCrossRefGoogle Scholar
  12. Corbesier, L., Vincent, C., Jang, S., Fornara, F., Fan, Q., Searle, I., Giakountis, A., Farrona, S., Gissot, L., Turnbull, C., et al. (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030–1033.PubMedCrossRefGoogle Scholar
  13. D’Aloia, M., Bonhomme, D., Bouché, F., Tamseddak, K., Ormenese, S., Torti, S., Coupland, G., and Périlleux, C. (2011). Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. Plant J. 65, 972–979.PubMedCrossRefGoogle Scholar
  14. Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664.PubMedCrossRefGoogle Scholar
  15. Gutierrez, L., Mauriat, M., Guénin, S., Pelloux, J., Lefebvre, J.F., Louvet, R., Rusterucci, C., Moritz, T., Guerineau, F., and Bellini, C. (2008). The lack of a systematic validation of reference genes: a serious pitfall undervalued in reverse transcription-polymerase chain reaction (RT-PCR) analysis in plants. Plant Biotechnol. J. 6, 609–618.PubMedCrossRefGoogle Scholar
  16. Jaeger, K.E., and Wigge, P.A. (2007). FT protein acts as a longrange signal in Arabidopsis. Curr. Biol. 17, 1050–1054.PubMedCrossRefGoogle Scholar
  17. Jang, S., Torti, S., and Coupland, G. (2009). Genetic and spatial interactions between FT, TSF and SVP during the early stages of floral induction in Arabidopsis. Plant J. 60, 614–625.PubMedCrossRefGoogle Scholar
  18. Jiang, C.J., Shimono, M., Sugano, S., Kojima, M., Yazawa, K., Yoshida, R., Inoue, H., Hayashi, N., Sakakibara, H., and Takatsuji, H. (2010). Abscisic acid interacts antagonistically with salicylic acid signaling pathway in rice-Magnaporthe grisea interaction. Mol. Plant Microbe Interact. 23, 791–798.PubMedCrossRefGoogle Scholar
  19. Jung, J.H., Seo, P.J., Kang, S.K., and Park, C.-M. (2011). miR172 signals are incorporated into the miR156 signaling pathway at the SPL3/4/5 genes in Arabidopsis developmental transitions. Plant Mol. Biol. 76, 35–45.PubMedCrossRefGoogle Scholar
  20. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962–1965.PubMedCrossRefGoogle Scholar
  21. Kim, S.G., and Park, C.-M. (2007). Membrane-mediated salt stress signaling in flowering time control. Plant Signal. Behav. 2, 517–518.PubMedCrossRefGoogle Scholar
  22. Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H., and Park, C.-M. (2006). A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18, 3132–3144.PubMedCrossRefGoogle Scholar
  23. Kim, S.G., Kim, S.Y., and Park, C.-M. (2007). A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226, 647–654.PubMedCrossRefGoogle Scholar
  24. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960–1962.PubMedCrossRefGoogle Scholar
  25. Kumar, S.V., and Wigge, P.A. (2010). H2A.Z-containing nucleosomes mediate the thermosensory response in Arabidopsis. Cell 140, 136–147.PubMedCrossRefGoogle Scholar
  26. Kurup, S., Jones, H.D., and Holdsworth, M.J. (2000). Interactions of the developmental regulator ABI3 with proteins identified from developing Arabidopsis seeds. Plant J. 21, 143–155.PubMedCrossRefGoogle Scholar
  27. Lee, J.H., Yoo, S.J., Park, S.H., Hwang, I., Lee, J.S., and Ahn, J.H. (2007). Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 21, 397–402.PubMedCrossRefGoogle Scholar
  28. Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759–771.PubMedCrossRefGoogle Scholar
  29. Levy, Y.Y., and Dean, C. (1998). Control of flowering time. Curr. Opin. Plant Biol. 1, 49–54.PubMedCrossRefGoogle Scholar
  30. Li, K., Wang, Y., Han, C., Zhang, W., Jia, H., and Li, X. (2007). GA signaling and CO/FT regulatory module mediate salt-induced late flowering in Arabidopsis thaliana. Plant Growth Regul. 53, 195–206.CrossRefGoogle Scholar
  31. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11, 1007–1018.PubMedCrossRefGoogle Scholar
  32. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068.PubMedGoogle Scholar
  33. Michaels, S.D., Himelblau, E., Kim, S.Y., Schomburg, F.M., and Amasino, R.M. (2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol. 137, 149–156.PubMedCrossRefGoogle Scholar
  34. Mimida, N., Goto, K., Kobayashi, Y., Araki, T., Ahn, J.H., Weigel, D., Murata, M., Motoyoshi, F., and Sakamoto, W. (2001). Functional divergence of the TFL1-like gene family in Arabidopsis revealed by characterization of a novel homologue. Genes Cells 6, 327–336.PubMedCrossRefGoogle Scholar
  35. Moon, J., Lee, H., Kim, M., and Lee, I. (2005). Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol. 46, 292–299.PubMedCrossRefGoogle Scholar
  36. Park, J., Kim, Y.S., Kim, S.G., Jung, J.H., Woo, J.C., and Park, C.-M. (2011). Integration of auxin and salt signals by a NAC transcription factor NTM2 during seed germination in Arabidopsis. Plant Physiol. 156, 537–549.PubMedCrossRefGoogle Scholar
  37. Poethig, R.S. (2003). Phase change and the regulation of developmental timing in plants. Science 301, 334–336.PubMedCrossRefGoogle Scholar
  38. Schoentgen, F., Saccoccio, F., Jollès, J., Bernier, I., and Jollès, P. (1987). Complete amino acid sequence of a basic 21-kDa protein from bovine brain cytosol. Eur. J. Biochem. 166, 333–338.PubMedCrossRefGoogle Scholar
  39. Serre, L., Vallée, B., Bureaud, N., Schoentgen, F., and Zelwer, C. (1998). Crystal structure of the phosphatidylethanolamine-binding protein from bovine brain: a novel structural class of phospholipid-binding proteins. Structure 6, 1255–1265.PubMedCrossRefGoogle Scholar
  40. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410–417.PubMedCrossRefGoogle Scholar
  41. Simpson, G.G., and Dean, C. (2000). Environmental-dependent acceleration of a developmental switch: the floral transition. Sci. STKE 2000, pe1.PubMedCrossRefGoogle Scholar
  42. Subbiah, V., and Reddy, K.J. (2010). Interactions between ethylene, abscisic acid and cytokinin during germination and seedling establishment in Arabidopsis. J. Biosci. 35, 451–458.PubMedCrossRefGoogle Scholar
  43. Turck, F., Fornara, F., and Coupland, G. (2008). Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Annu. Rev. Plant Biol. 59, 573–594.PubMedCrossRefGoogle Scholar
  44. Udvardi, M.K., Czechowski, T., and Scheible, W.R. (2008). Eleven golden rules of quantitative RT-PCR. Plant Cell 20, 1736–1737.PubMedCrossRefGoogle Scholar
  45. Wigge, P.A., Kim, M.C., Jaeger, K.E., Busch, W., Schmid, M., Lohmann, J.U., and Weigel, D. (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056–1059.PubMedCrossRefGoogle Scholar
  46. Xi, W., Liu, C., Hou, X., and Yu, H. (2010). MOTHER OF FT AND TFL1 regulates seed germination through a negative feedback loop modulating ABA signaling in Arabidopsis. Plant Cell 22, 1733–1748.PubMedCrossRefGoogle Scholar
  47. Yaish, M.W., El-Kereamy, A., Zhu, T., Beatty, P.H., Good, A.G., Bi, Y.M., and Rothstein, S.J. (2010). The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet. 6, e1001098.PubMedCrossRefGoogle Scholar
  48. Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M., and Araki, T. (2005). TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46, 1175–1189.PubMedCrossRefGoogle Scholar
  49. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781–803.PubMedCrossRefGoogle Scholar
  50. Yang, W., Mason, C.B., Pollock, S.V., Lavezzi, T., Moroney, J.V., and Moore, T.S. (2004). Membrane lipid biosynthesis in Chlamydomonas reinhardtii: expression and characterization of CTP: phosphoethanolamine cytidylyltransferase. Biochem. J. 382, 51–57.PubMedCrossRefGoogle Scholar
  51. Yoo, S.Y., Kardailsky, I., Lee, J.S., Weigel, D., and Ahn, J.H. (2004). Acceleration of flowering by overexpression of MFT (MOTHER OF FT AND TFL1). Mol. Cells 17, 95–101.PubMedGoogle Scholar
  52. Yoo, S.Y., Kim, Y., Kim, S.Y., Lee, J.S., and Ahn, J.H. (2007). Control of flowering time and cold response by a NAC-domain protein in Arabidopsis. PLoS One 2, e642.PubMedCrossRefGoogle Scholar
  53. Yoo, S.J., Chung, K.S., Jung, S.H., Yoo, S.Y., Lee, J.S., and Ahn, J.H. (2010). BROTHER OF FT AND TFL1 (BFT) has TFL1-like activity and functions redundantly with TFL1 in inflorescence meristem development in Arabidopsis. Plant J. 63, 241–253.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  1. 1.Department of ChemistrySeoul National UniversitySeoulKorea
  2. 2.Plant Genomics and Breeding InstituteSeoul National UniversitySeoulKorea

Personalised recommendations