Molecules and Cells

, Volume 32, Issue 5, pp 437–444 | Cite as

Simvastatin promotes osteogenic differentiation of mouse embryonic stem cells via canonical Wnt/β-catenin signaling

  • Ling Juan Qiao
  • Kyung Lhi Kang
  • Jung Sun Heo


Simvastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, has been known to reduce cholesterol biosynthesis. However, recent studies demonstrate that simvastatin shows diverse cholesterol-independent functions including cellular differentiation. In this study, we investigated the stimulatory effect of simvastatin on the osteogenic differentiation of mouse embryonic stem cells (ESCs). The osteogenic effect of simvastatin was observed at relatively low doses (ranging from 1 nM to 200 nM). Incubation of ESCs in simvastatin-supplemented osteogenic medium significantly increased alkaline phosphatase (ALP) activity at day 7. The matrix mineralization was also augmented and demonstrated pivotal levels after 14 days incubation of simvastatin. Osteogenic differentiation of ESCs by simvastatin was determined by upregulation of the mRNA expression of runtrelated gene 2 (Runx2), osterix (OSX), and osteocalcin (OCN) as osteogenic transcription factors. Moreover, the increased protein expression of OCN, osteopontin (OPN), and collagen type I (Coll I) was assessed using Western blot analysis and immunocytochemistry. However, the blockage of canonical Wnt signaling by DKK-1 downregulated simvastatin-induced ALP activity and the mRNA expression of each osteogenic transcription factor. Furthermore, the β-catenin specific siRNA transfection decreased the protein levels of OCN, OPN, and Coll I. Collectively, these findings suggest that simvastatin enhances the differentiation of ESCs toward osteogenic lineage through activation of canonical Wnt/β-catenin signaling.


canonical Wnt/β-catenin signaling embryonic stem cells osteogenic differentiation simvastatin 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baek, K.H., Lee, W.Y., Oh, K.W., Tae, H.J., Lee, J.M., Lee, E.J., Han, J.H., Kang, M.I., Cha, B.Y., Lee, K.W., et al. (2005). The effect of simvastatin on the proliferation and differentiation of human bone marrow stromal cells. J. Korean Med. Sci. 20, 438–444.PubMedCrossRefGoogle Scholar
  2. Bielby, R.C., Boccaccini, A.R., Polak, J.M., and Buttery, L.D. (2004). In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells. Tissue Eng. 10, 1518–1525.PubMedGoogle Scholar
  3. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.PubMedCrossRefGoogle Scholar
  4. Bratt-Leal, A.M., Carpenedo, R.L., and McDevitt, T.C. (2009). Engineering the embryoid body microenvironment to direct embryonic stem cell differentiation. Biotechnol. Prog. 25, 43–51.PubMedCrossRefGoogle Scholar
  5. Buttery, L.D., Bourne, S., Xynos, J.D., Wood, H., Hughes, F.J., Hughes, S.P., Episkopou, V., and Polak, J.M. (2001). Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng. 7, 89–99.PubMedCrossRefGoogle Scholar
  6. Canalis, E., Economides, A.N., and Gazzerro, E. (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 24, 218–235.PubMedCrossRefGoogle Scholar
  7. Chadwick, K., Wang, L., Li, L., Menendez, P., Murdoch, B., Rouleau, A., and Bhatia, M. (2003). Cytokines and BMP-4 promote hematopoietic differentiation of human embryonic stem cells. Blood 102, 906–915.PubMedCrossRefGoogle Scholar
  8. Chaudhry, G.R., Yao, D., Smith, A., and Hussain, A. (2004). Osteogenic Cells Derived From Embryonic Stem Cells Produced Bone Nodules in Three-Dimensional Scaffolds. J. Biomed. Biotechnol. 2004, 203–210.PubMedCrossRefGoogle Scholar
  9. Chen, P.Y., Sun, J.S., Tsuang, Y.H., Chen, M.H., Weng, P.W., and Lin, F.H. (2010). Simvastatin promotes osteoblast viability and differentiation via Ras/Smad/Erk/BMP-2 signaling pathway. Nutr. Res. 30, 191–199.PubMedCrossRefGoogle Scholar
  10. Grebenová, D., Kuzelová, K., Smetana, K., Pluskalová, M., Cajthamlová, H., Marinov, I., Fuchs, O., Soucek, J., Jarolím, P., and Hrkal, Z. (2003). Mitochondrial and endoplasmic reticulum stress-induced apoptotic pathways are activated by 5-aminolevulinic acid-based photodynamic therapy in HL60 leukemia cells. J. Photochem. Photobiol. B. 69, 71–85.PubMedCrossRefGoogle Scholar
  11. Guo, A.J., Choi, R.C., Cheung, A.W., Chen, V.P., Xu, S.L., Dong, T.T., Chen, J.J., and Tsim, K.W. (2011). Baicalin, a Flavone, Induces the Differentiation of Cultured Osteoblasts: an action via the Wnt/beta-catenin signaling pathway. J. Biol. Chem. 286, 27882–27893.PubMedCrossRefGoogle Scholar
  12. Harada, H., Tagashira, S., Fujiwara, M., Ogawa, S., Katsumata, T., Yamaguchi, A., Komori, T., and Nakatsuka, M. (1999). Cbfa1 isoforms exert functional differences in osteoblast differentiation. J. Biol. Chem. 274, 6972–6978.PubMedCrossRefGoogle Scholar
  13. Heng, B.C., Cao, T., Stanton, L.W., Robson, P., and Olsen, B. (2004). Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J. Bone Miner. Res. 19, 1379–1394.PubMedCrossRefGoogle Scholar
  14. Heo, J.S., and Lee, J.C. (2011). β-Catenin mediates cyclic strain-stimulated cardiomyogenesis in mouse embryonic stem cells through ROS-dependent and integrin-mediated PI3K/Akt pathways. J. Cell. Biochem. 112, 1880–1889.PubMedCrossRefGoogle Scholar
  15. Kato, M., Patel, M.S., Levasseur, R., Lobov, I., Chang, B.H., Glass 2nd, D.A., Hartmann, C., Li, L., Hwang, T.H., Brayton, C.F., et al. (2002). Cbfa1-independent decrease in osteoblast proliferation, osteopenia, and persistent embryonic eye vascularization in mice deficient in Lrp5, a Wnt coreceptor. J. Cell Biol. 157, 303–314.PubMedCrossRefGoogle Scholar
  16. Kern, B., Shen, J., Starbuck, M., and Karsenty, G. (2001). Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J. Biol. Chem. 276, 7101–7107.PubMedCrossRefGoogle Scholar
  17. Kim, S.Y., Kim, S., Yun-Choi, H.S., and Jho, E.H. (2011). Wnt5a potentiates U46619-induced platelet aggregation via the PI3K/Akt pathway. Mol. Cells [Epub ahead of print].Google Scholar
  18. Lin, C.L., Cheng, H., Tung, C.W., Huang, W.J., Chang, P.J., Yang, J.T., and Wang, J.Y. (2008). Simvastatin reverses high glucoseinduced apoptosis of mesangial cells via modulation of Wnt signaling pathway. Am. J. Nephrol. 28, 290–297.PubMedCrossRefGoogle Scholar
  19. Maeda, T., Matsunuma, A., Kawane, T., and Horiuchi, N. (2001). Simvastatin promotes osteoblast differentition and mineralization in MC3T3-E1 cells. Biochem. Biophys. Res. Commun. 280, 874–877.PubMedCrossRefGoogle Scholar
  20. Montagnani, A., Gonnelli, S., Cepollaro, C., Pacini, S., Campagna, M.S., Franci, M.B., Lucani, B., and Gennari, C. (2003). Effect of simvastatin treatment on bone mineral density and bone turnover in hypercholesterolemic postmenopausal women: a 1-year longitudinal study. Bone 32, 427–433.PubMedCrossRefGoogle Scholar
  21. Mundy, G., Garrett, R., Harris, S., Chan, J., Chen, D., Rossini, G., Boyce, B., Zhao, M., and Gutierrez, G. (1999). Stimulation of bone formation in vitro and in rodents by statins. Science 286, 1946–1949.PubMedCrossRefGoogle Scholar
  22. Nusse, R. (2005). Wnt signaling in disease and in development. Cell Res. 15, 28–32.PubMedCrossRefGoogle Scholar
  23. Pagkalos, J., Cha, J.M., Kang, Y., Heliotis, M., Tsiridis, E., and Mantalaris, A. (2010). Simvastatin induces osteogenic differenttiation of murine embryonic stem cells. J. Bone Miner. Res. 25, 2470–2478.PubMedCrossRefGoogle Scholar
  24. Phillips, B.W., Belmonte, N., Vernochet, C., Ailhaud, G., and Dani, C. (2001). Compactin enhances osteogenesis in murine embryonic stem cells. Biochem. Biophys. Res. Commun. 284, 478–484.PubMedCrossRefGoogle Scholar
  25. Rawadi, G., Vayssiere, B., Dunn, F., Baron, R., and Roman-Roman, S., (2003). BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J. Bone Miner. Res. 18, 1842–1853.PubMedCrossRefGoogle Scholar
  26. Ruiz-Gaspa, S., Nogues, X., Enjuanes, A., Monllau, J.C., Blanch, J., Carreras, R., Mellibovsky, L., Grinberg, D., Balcells, S., Díez-Perez, A., et al. (2007). Simvastatin and atorvastatin enhance gene expression of collagen type 1 and osteocalcin in primary human osteoblasts and MG-63 cultures. J. Cell. Biochem. 101, 1430–1438.PubMedCrossRefGoogle Scholar
  27. Sakoda, K., Yamamoto, M., Negishi, Y., Liao, J.K., Node, K., and Izumi, Y. (2006). Simvastatin decreases IL-6 and IL-8 production in epithelial cells. J. Dent. Res. 85, 520–523.PubMedCrossRefGoogle Scholar
  28. Song, C., Guo, Z., Ma, Q., Chen, Z., Liu, Z., Jia, H., and Dang, G. (2003). Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem. Biophys. Res. Commun. 308, 458–462.PubMedCrossRefGoogle Scholar
  29. Sottile, V., Thomson, A., and McWhir, J. (2003). In vitro osteogenic differentiation of human ES cells. Cloning Stem Cells 5, 149–155.PubMedCrossRefGoogle Scholar
  30. Wang, J.W., Xu, S.W., Yang, D.S., and Lv, R.K. (2007). Locally applied simvastatin promotes fracture healing in ovariectomized rat. Osteoporos. Int. 18, 1641–1650.PubMedCrossRefGoogle Scholar
  31. Xu, R.H., Chen, X., Li, D.S., Li, R., Addicks, G.C., Glennon, C., Zwaka, T.P., and Thomson, J.A. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat. Biotechnol. 20, 1261–1264.PubMedCrossRefGoogle Scholar
  32. Zhang, Y., Wang, Y., Li, X., Zhang, J., Mao, J., Li, Z., Zheng, J., Li, L., Harris, S., and Wu, D. (2004). The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol. Cell. Biol. 24, 4677–4684.PubMedCrossRefGoogle Scholar
  33. Zhang, L., Zhang, L., Tian, F., Han, D., Niu, J., and Liu, X. (2009). Effect of simvastatin on mRNA expressions of some components of Wnt signaling pathway in differentiation process of osteoblasts derived from BMSCs of rats. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 23, 1371–1375.PubMedGoogle Scholar
  34. zur Nieden, N.I., Kempka, G., Rancourt, D.E., and Ahr, H.J. (2005). Induction of chondro-, osteo- and adipogenesis in embryonic stem cells by bone morphogenetic protein-2: effect of cofactors on differentiating lineages. BMC Dev. Biol. 5, 1–15.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Ling Juan Qiao
    • 1
  • Kyung Lhi Kang
    • 2
  • Jung Sun Heo
    • 1
  1. 1.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of DentistryKyung Hee UniversitySeoulKorea
  2. 2.Department of Periodontology, School of DentistryKyung Hee UniversitySeoulKorea

Personalised recommendations