Advertisement

Molecules and Cells

, Volume 32, Issue 5, pp 421–429 | Cite as

Arabidopsis TTR1 causes LRR-dependent lethal systemic necrosis, rather than systemic acquired resistance, to Tobacco ringspot virus

  • Moon Nam
  • Serry Koh
  • Sung Uk Kim
  • Leslie L. Domier
  • Jae Heung Jeon
  • Hong Gi Kim
  • Su-Heon Lee
  • Andrew F. Bent
  • Jae Sun MoonEmail author
Article

Abstract

Most Arabidopsis ecotypes display tolerance to the Tobacco ringspot virus (TRSV), but a subset of Arabidopsis ecotypes, including Estland (Est), develop lethal systemic necrosis (LSN), which differs from the localized hypersensitive responses (HRs) or systemic acquired resistance (SAR) characteristic of incompatible reactions. Neither viral replication nor the systemic movement of TRSV was restricted in tolerant or sensitive Arabidopsis ecotypes; therefore, the LSN phenotype shown in the sensitive ecotypes might not be due to viral accumulation. In the present study, we identified the Est TTR1 gene (tolerance to Tobacco ringspot virus 1) encoding a TIR-NBS-LRR protein that controls the ecotype-dependent tolerant/sensitive phenotypes by a map-based cloning method. The tolerant Col-0 ecotype Arabidopsis transformed with the sensitive Est TTR1 allele developed an LSN phenotype upon TRSV infection, suggesting that the Est TTR1 allele is dominant over the tolerant ttr1 allele of Col-0. Multiple sequence alignments of 10 tolerant ecotypes from those of eight sensitive ecotypes showed that 10 LRR amino acid polymorphisms were consistently distributed across the TTR1/ttr1 alleles. Site-directed mutagenesis of these amino acids in the LRR region revealed that two sites, L956S and K1124Q, completely abolished the LSN phenotype. VIGS study revealed that TTR1 is dependent on SGT1, rather than EDS1. The LSN phenotype by TTR1 was shown to be transferred to Nicotiana benthamiana, demonstrating functional conservation of TTR1 across plant families, which are involved in SGT-dependent defense responses, rather than EDS1-dependent signaling pathways.

Keywords

Arabidopsis lethal systemic necrosis TIR-NBS-LRR tobacco ringspot virus tolerance to tobacco ringspot virus 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarts, N., Metz, M., Holub, E., Staskawicz, B.J., Daniels, M.J., and Parker, J.E. (1998). Different requirements for EDS1 and NDR1 by disease resistance genes define at least two R gene-mediated signaling pathways in Arabidopsis. Proc. Natl. Acad. Sci. USA 95, 10306–10311.PubMedCrossRefGoogle Scholar
  2. Ade, J., DeYoung, B.J., Golstein, C., and Innes, R.W. (2007). Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc. Natl. Acad. Sci. USA 104, 2531–2536.PubMedCrossRefGoogle Scholar
  3. Austin, M.J., Muskett, P., Kahn, K., Feys, B.J., Jones, J.D., and Parker, J.E. (2002). Regulatory role of SGT1 in early R genemediated plant defenses. Science 295, 2077–2080.PubMedCrossRefGoogle Scholar
  4. Azevedo, C., Sadanandom, A., Kitagawa, K., Freialdenhoven, A., Shirasu, K., and Schulze-Lefert, P. (2002). The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science 295, 2073–2076.PubMedCrossRefGoogle Scholar
  5. Bent, A.F., and Mackey, D. (2007). Elicitors, effectors, and R genes: the new paradigm and a lifetime supply of questions. Annu. Rev. Phytopathol. 45, 399–436.PubMedCrossRefGoogle Scholar
  6. Burch-Smith, T.M., Schiff, M., Caplan, J.L., Tsao, J., Czymmek, K., and Dinesh-Kumar, S.P. (2007). A novel role for the TIR domain in association with pathogen-derived elicitors. PLoS Biol. 5, e68.PubMedCrossRefGoogle Scholar
  7. Chamaillard, M., Girardin, S.E., Viala, J., and Philpott, D.J. (2003). Nods, Nalps and Naip: intracellular regulators of bacterialinduced inflammation. Cell. Microbiol. 5, 581–592.PubMedCrossRefGoogle Scholar
  8. Chu, P.W., and Francki, R.I. (1979). The chemical subunit of tobacco ringspot virus coat protein. Virology 93, 398–412.PubMedCrossRefGoogle Scholar
  9. Chung, E., Seong, E., Kim, Y.C., Chung, E.J., Oh, S.K., Lee, S., Park, J.M., Joung, Y.H., and Choi, D. (2004). A method of high frequency virus-induced gene silencing in chili pepper (Capsicum annuum L. cv. Bukang). Mol. Cells 17, 377–380.PubMedGoogle Scholar
  10. da Silva Correia, J., Miranda, Y., Leonard, N., and Ulevitch, R. (2007). SGT1 is essential for Nod1 activation. Proc. Natl. Acad. Sci. USA 104, 6764–6769.PubMedCrossRefGoogle Scholar
  11. Deslandes, L., Olivier, J., Peeters, N., Feng, D.X., Khounlotham, M., Boucher, C., Somssich, I., Genin, S., and Marco, Y. (2003). Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc. Natl. Acad. Sci. USA 100, 8024–8029.PubMedCrossRefGoogle Scholar
  12. Dinesh-Kumar, S.P., Whitham, S., Choi, D., Hehl, R., Corr, C., and Baker, B. (1995). Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc. Natl. Acad. Sci. USA 92, 4175–4180.PubMedCrossRefGoogle Scholar
  13. Dinesh-Kumar, S.P., Tham, W.H., and Baker, B.J. (2000). Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc. Natl. Acad. Sci. USA 97, 14789–14794.PubMedCrossRefGoogle Scholar
  14. Flor, H.H. (1971). Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 9, 275–296.CrossRefGoogle Scholar
  15. Fu, D.Q., Ghabrial, S., and Kachroo, A. (2009). GmRAR1 and GmSGT1 are required for basal, R gene-mediated and systemic acquired resistance in soybean. Mol. Plant Microbe Interact. 22, 86–95.PubMedCrossRefGoogle Scholar
  16. Gallois, P., and Marinho, P. (1995). Leaf disk transformation using Agrobacterium tumefaciens-expression of heterologous genes in tobacco. Methods Mol. Biol. 49, 39–48.PubMedGoogle Scholar
  17. Goodin, M.M., Zaitlin, D., Naidu, R.A., and Lommel, S.A. (2008). Nicotiana benthamiana: its history and future as a model for plant-pathogen interactions. Mol. Plant Microbe Interact. 21, 1015–1026.PubMedCrossRefGoogle Scholar
  18. Hajdukiewicz, P., Svab, Z., and Maliga, P. (1994). The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol. Biol. 25, 989–994.PubMedCrossRefGoogle Scholar
  19. Hubert, D.A., Tornero, P., Belkhadir, Y., Krishna, P., Takahashi, A., Shirasu, K., and Dangl, J.L. (2003). Cytosolic HSP90 associates with and modulates the Arabidopsis RPM1 disease resistance protein. EMBO J. 22, 5679–5689.PubMedCrossRefGoogle Scholar
  20. Hugot, J.P., Chamaillard, M., Zouali, H., Lesage, S., Cezard, J.P., Belaiche, J., Almer, S., Tysk, C., O’Morain, C.A., Gassull, M., et al. (2001). Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411, 599–603.PubMedCrossRefGoogle Scholar
  21. Hulbert, S.H., Webb, C.A., Smith, S.M., and Sun, Q. (2001). Resistance gene complexes: evolution and utilization. Annu. Rev. Phytopathol. 39, 285–312.PubMedCrossRefGoogle Scholar
  22. Inohara, N., Koseki, T., del Peso, L., Hu, Y., Yee, C., Chen, S., Carrio, R., Merino, J., Liu, D., Ni, J., et al. (1999). Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-kappaB. J. Biol. Chem. 274, 14560–14567.PubMedCrossRefGoogle Scholar
  23. Jia, Y., McAdams, S.A., Bryan, G.T., Hershey, H.P., and Valent, B. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J. 19, 4004–4014.PubMedCrossRefGoogle Scholar
  24. Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444, 323–329.PubMedCrossRefGoogle Scholar
  25. Lee, J.M., Hartman, G.L., Domier, L.L., and Bent, A.F. (1996). Identification and map location of TTR1, a single locus in Arabidopsis thaliana that confers tolerance to tobacco ringspot nepovirus. Mol. Plant Microbe Interact. 9, 729–735.PubMedCrossRefGoogle Scholar
  26. Liu, Y., Burch-Smith, T., Schiff, M., Feng, S., and Dinesh-Kumar, S.P. (2004). Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. J. Biol. Chem. 279, 2101–2108.PubMedCrossRefGoogle Scholar
  27. Medzhitov, R. (2007). Recognition of microorganisms and activation of the immune response. Nature 449, 819–826.PubMedCrossRefGoogle Scholar
  28. Meyers, B.C., Kozik, A., Griego, A., Kuang, H., and Michelmore, R.W. (2003). Genome-wide analysis of NBS-LRR-encoding genes in Arabidopsis. Plant Cell 15, 809–834.PubMedCrossRefGoogle Scholar
  29. Peart, J.R., Cook, G., Feys, B.J., Parker, J.E., and Baulcombe, D.C. (2002). An EDS1 orthologue is required for N-mediated resistance against tobacco mosaic virus. Plant J. 29, 569–579.PubMedCrossRefGoogle Scholar
  30. Ratcliff, F., Martin-Hernandez, A.M., and Baulcombe, D.C. (2001). Technical advance. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 25, 237–245.PubMedCrossRefGoogle Scholar
  31. Sambrook, J., Fritsch, E.F., and Maniatis, T. (2001). Molecular Cloning: A Laboratory Manual, 3rd ed. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor).Google Scholar
  32. Stange, C., Matus, J.T., Dominguez, C., Perez-Acle, T., and Arce-Johnson, P. (2008). The N-homologue LRR domain adopts a folding which explains the TMV-Cg-induced HR-like response in sensitive tobacco plants. J. Mol. Graph. Model. 26, 850–860.PubMedCrossRefGoogle Scholar
  33. Tai, Y.S. (2008). Interactome of signaling networks in wheat: the protein-protein interaction between TaRAR1 and TaSGT1. Mol. Biol. Rep. 35, 337–343.PubMedCrossRefGoogle Scholar
  34. Takahashi, A., Casais, C., Ichimura, K., and Shirasu, K. (2003). HSP90 interacts with RAR1 and SGT1 and is essential for RPS2-mediated disease resistance in Arabidopsis. Proc. Natl. Acad. Sci. USA 100, 11777–11782.PubMedCrossRefGoogle Scholar
  35. Wetzel, C.M., and Rodermel, S.R. (1998). Regulation of phytoene desaturase expression is independent of leaf pigment content in Arabidopsis thaliana. Plant Mol. Biol. 37, 1045–1053.PubMedCrossRefGoogle Scholar

Copyright information

© The Korean Society for Molecular and Cellular Biology and Springer Netherlands 2011

Authors and Affiliations

  • Moon Nam
    • 1
  • Serry Koh
    • 1
  • Sung Uk Kim
    • 1
  • Leslie L. Domier
    • 2
  • Jae Heung Jeon
    • 1
  • Hong Gi Kim
    • 3
  • Su-Heon Lee
    • 4
  • Andrew F. Bent
    • 5
  • Jae Sun Moon
    • 1
    Email author
  1. 1.Green Bio-materials Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
  2. 2.Department of Crop SciencesUSDA-ARS, Soybean/Maize Germplasm, Pathology, and Genetics Research UnitUrbanaUSA
  3. 3.Department of Agricultural BiologyChungnam National UniversityDaejeonKorea
  4. 4.Crop Protection Division, National Academy of Agricultural ScienceRural Development AdministrationSuwonKorea
  5. 5.Department of Plant PathologyUniversity of WisconsinMadisonUSA

Personalised recommendations